STHWWER ENCOUNHERS

*encounters and relaxation timescales *timescales for real stellar systems

So far: perfectly smooth potential
In reality: individual stars have a bumpy ride...
Under these conditions: is the collisionless approximation valid?
$>$ Encounter and (2-body) relaxation timescales Mean free path (between encounters): $\lambda \sim 1 / \mathrm{nA}$ where $A \sim \mathrm{~b}^{2}$ is cross section (b - impact parameter) n - number density

Time between encounters:

$$
\tau \sim 1 / n A_{V}
$$

where v - is the mean velocity between encounters
Consider 3 regimes: direct collision (tidal capture) strong encounters weak encounters
\& Direct collision (tidal capture)
For $b \sim f e w x R_{*}$ (where R_{*} is the stellar radius):
strong tides \rightarrow orbital energy dissipates, tidal capture
depending on circumstances, stars can coalesce

exceedingly rare in galaxies!

Defined as $\Delta \mathrm{v} \sim \mathrm{v}$ and occuring when $\mathbf{b}=\mathbf{r}_{\mathrm{s}}$ (s for strong) is sufficiently small

From virial theorem: $\mathrm{Gm}^{2} / \mathbf{r}_{\mathrm{s}}=\mathrm{mv}^{2}$ so $\mathrm{r}_{\mathrm{s}}=\mathrm{Gm} / \mathrm{v}^{2}$ (where m - stellar mass)

This is about 1 AU where $\mathrm{v} \sim 20-30 \mathrm{~km} / \mathrm{s}$

Near Sun: v ~ 10 km/s
$\mathrm{n} \sim 0.1 \mathrm{pc}^{-3}$

The time interval between collisions, $\mathbf{t}_{\mathrm{s}}=\mathbf{1} / \mathbf{n r}_{\mathrm{s}}{ }^{2} \mathbf{v}=\mathbf{v}^{3} / \mathrm{G}^{2} \mathbf{m}^{2} \mathbf{n} \sim 10^{15} \mathrm{yrs}$亿
This is very rare for galaxies, but can be relevant for: globular clusters cores, galactic nuclei and clusters of galaxies
The Sun hasn't been in a strong encounter since its origin, or the planetary system would be destroyed...
*Weak deflections
-Defined as $\Delta \mathbf{v} \ll \mathbf{v}$, so $\mathbf{b} \gg \mathbf{r}_{\text {s }}$

Estimate deflection velocity towards the target star:
Time in the vicinity of a target star is $\Delta \mathrm{t} \sim \mathbf{2 b} / \mathbf{v}$
Perpendicular acceleration is about $\mathbf{G m} / \mathbf{b}^{2} \rightarrow \Delta \mathbf{v}_{\perp} \sim 2 \mathbf{G m} / \mathbf{b v}$
Deflection angle (in the solar neighborhood):

$$
\Delta \vartheta \sim \Delta v_{\perp} / \mathbf{v} \sim 2 G \mathbf{G m} / \mathbf{b v}^{2} \sim 2 "
$$

-After many encounters:

$$
\Delta \mathbf{v}_{\mathrm{tot}} \sim \sum \Delta \mathbf{v}
$$

\square
Since the deflection orientations are random:
$\Delta \mathbf{v}_{\text {tot }}$ performs random walk

The amplitude (squared) of this random walk after time t :

$$
\begin{align*}
& \mathrm{d}^{2} \sim \sum \lambda^{2} \mathrm{~N} \sim \mathrm{~N} \sum\left(\Delta \mathrm{v}_{\perp}\right)^{2} \\
&\left|\Delta V_{\mathrm{tot}}\right|^{2}=\sum|\Delta V|^{2}=\int_{b_{\text {min }}}^{b_{\max }}\left(\frac{2 G m}{b V}\right)^{2} t n V 2 \pi b d b \tag{4-1a}\\
&=\frac{8 \pi G^{2} m^{2} n t}{V} \ln \Lambda \tag{4-1b}\\
& \quad \text { where } \Lambda=\mathrm{b}_{\max } / \mathrm{b}_{\min }
\end{align*}
$$

Relaxation time: when $\Delta \mathrm{v}_{\text {tot }} \sim \mathrm{v}$. So changing $\mathrm{v} \rightarrow \sigma$,

$$
\text { where }[\sigma]=10 \mathrm{~km} / \mathrm{s} ;[\mathrm{m}]=\mathrm{M}_{\odot} ;[\rho]=10^{3} \mathrm{M}_{\odot} / \mathrm{pc}^{3}
$$

- Alternative expressions for (2-body) relaxation time

Using eq.(4-1b)

$$
\left|\Delta V_{\text {tot }}\right|^{2}=\sum|\Delta V|^{2}=\frac{8 \pi G^{2} m^{2} n t}{V} \ln \Lambda
$$ and a system of a size \mathbf{R} containing \mathbf{N} stars: $\mathrm{n}=3 \mathrm{~N} / 4 \pi \mathrm{R}^{3}$

From the virial theorem: $\mathbf{v}^{2}=\mathbf{G M} / \mathbf{R}=\mathbf{G N m} / \mathbf{R}$ and the system relaxes after $\Delta \mathrm{v}_{\text {tot }}=\mathbf{v}$

Take $\mathrm{b}_{\max } \sim \mathbf{R}, \mathrm{b}_{\min } \sim \mathrm{r}_{\mathrm{s}}=\mathrm{Gm} / \mathrm{v}^{2} \rightarrow \mathrm{~b}_{\max } / \mathrm{b}_{\min }=\Lambda \sim \mathbf{N}$
Next choose units of time as crossing time: $\mathbf{t}=\mathbf{t}_{\text {cross }} \sim \mathbf{R} / \mathbf{v}$ Substituting:

$$
t_{\text {relax }} \simeq t_{\text {cross }} \frac{N}{6 \ln N}
$$

The answer depends only on $\mathbf{N}(!)$

Note, that in

$\mathbf{t}_{\text {relax }}>\mathbf{t}_{\text {cross }}$ for $\mathbf{N}>30$

So, to a good approximation: stars orbit in overall potential

Equal logarithmic intervals in \mathbf{b} have equal contribution to long term deflections : from \mathbf{R} to $0.5 \mathbf{R}$, from $0.5 \mathbf{R}$ to $0.25 \mathbf{R}$

However, because of $\Delta \vartheta \sim \Delta v_{\perp} / v \sim 2 G m / b v^{2} \sim 2 "$
$\Delta \mathrm{v} / \mathrm{v} \sim 1 / \mathrm{b} \rightarrow$ for systems with $R \gg \mathrm{~b}_{\text {min }}$, most scattering is due to weak encounters $(\Delta \mathrm{v} \ll \mathrm{v})$
> Timescales in real stellar systems

System $\quad \mathrm{N} \quad \mathrm{R}(\mathrm{pc}) \quad \mathrm{t}_{\text {cross }} \quad \mathrm{t}_{\text {relax }} \quad \mathrm{t}_{\text {age }}$ age/relax

Open cluster	10^{2}	2	10^{6}	10^{7}	10^{8}	10
Glob. cluster	10^{5}	4	$10^{5.6}$	$10^{8.4}$	10^{10}	20
Elliptical g-y	10^{11}	$10^{4.5}$	10^{8}	$10^{16.4}$	10^{10}	10^{-7}
Gal. nucleus	10^{8}	10	$10^{4.2}$	10^{10}	10^{10}	1
Cluster of g-s	10^{2}	$10^{5.6}$	10^{9}	$10^{9.3}$	10^{10}	3

2-body relaxation may be relevant for galactic nuclei and clusteres of galaxies, but can be completely neglected for galaxies

DYNANICS OF GRJWCHC DISKS

Stellar orbits:

 *epicyclic approximation *resonances*density waves
*disk instabilities
>Epicyclic approximation
*Overview
-Assume: disk stars have circular trajectories with small deviations
Use Ptolemaic approximation - stellar orbits are
 superpositions of:
circular orbits along guiding center (deferent), radius $\mathbf{R}_{\mathbf{g}}$, angular velocity Ω_{g}
smaller elliptical epicycle, angular velocity \mathbf{k}, retrograde
-Consider gravity/centrifugal balance and conservation of angular momentum ($\mathrm{AM}=\mathrm{J}$)
put the star at the guiding center (GC) and perturb it radially outward
conserving $\mathbf{A M}=\operatorname{mrv}_{\phi} \rightarrow$ increase in r means the star moves backwards (relatively to GC)

The new balance between gravity and centrifugal forces:
if $\mathbf{A M}=$ const $\rightarrow \mathrm{F}_{\text {centrifug }} \sim \mathbf{v}_{\boldsymbol{\phi}}{ }^{2} / \mathbf{r} \sim \mathrm{r}^{3}$ while $\mathrm{F}_{\text {grav }}$ fall slower than \mathbf{r}^{2} at larger $\mathbf{r}: \mathbf{F}_{\text {grav }}>\mathbf{F}_{\text {centrifug }}$ and the star is pulled inwards (relative to GC) as the star falls in, \mathbf{r} decreases and \mathbf{v} increases \rightarrow the star moves forward (rel to GC)
but $\mathbf{F}_{\text {centrifug }}>\mathbf{F}_{\text {grav }}$ and the star moves forward again

the cycle repeats \rightarrow a star moves on a small retrograde epicycle
-In general, Ω_{g} and $\boldsymbol{\kappa}$ are different \rightarrow so the orbit does not close however, as we shall see: from the reference frame rotating with $\Omega_{\mathrm{g}}-\mathrm{k} / 2 \rightarrow$ the orbits do nearly close (closed ellipses)
-Consider a smooth axisymmetric flattened mass distribution with potential $\Phi(\mathbf{R}, \mathbf{z})$ and $\mathbf{J}=$ const. (no azimuthal forces!), and using cylindrical coordinate system:

$$
\ddot{\mathbf{R}}=-\nabla \Phi(\mathbf{R}, \mathrm{z}) ; \quad \mathrm{L}_{\mathrm{z}}=\mathbf{R}^{2} \dot{\varphi}=\text { const }
$$

Test particle velocity in the $\mathbf{z}=0$ plane:

$$
\mathrm{v}^{2}=\dot{\mathrm{R}}^{2}+(\mathrm{R} \dot{\phi})^{2}
$$

Lagrangian: L $=\mathrm{K}-\Phi$

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \mathrm{~L}}{\partial \dot{\mathrm{q}}_{\mathrm{i}}}\right)-\frac{\partial \mathrm{L}}{\partial q_{\mathrm{i}}}=0
$$

$$
\mathrm{L}=0.5 \mathrm{~m}\left[\dot{\mathrm{R}}^{2}+(\mathrm{R} \dot{\phi})^{2}\right]-\mathrm{m} \Phi
$$

$$
\begin{array}{lll}
\frac{\partial \mathrm{L}}{\partial \mathrm{R}}=\mathrm{m} \dot{\mathrm{R}} & \frac{\partial \mathrm{~L}}{\partial \mathrm{R}}=\mathrm{mR} \dot{\phi}^{2}-\frac{\partial \Phi}{\partial \mathrm{R}} & \frac{\mathrm{~d}}{\mathrm{dt}}\left(\frac{\partial \mathrm{~L}}{\partial \dot{\mathrm{R}}}\right)-\left(\frac{\partial \mathrm{L}}{\partial \mathrm{R}}\right)=0 \\
\frac{\partial L}{\partial \dot{\phi}}=\mathrm{m} R^{2} \dot{\phi} & \frac{\partial L}{\partial \phi}=0 & \frac{\mathrm{~d}}{\mathrm{dt}}\left(\frac{\partial \mathrm{~L}}{\partial \dot{\phi}}\right)-\left(\frac{\partial \mathrm{L}}{\partial \phi}\right)=0
\end{array}
$$

\square

$$
\begin{aligned}
& \frac{d}{d t}(m \dot{R})-m R \dot{\phi}^{2}+\frac{d \Phi}{d R}=0 \\
& \frac{d}{d t}(m R \dot{\phi})=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t}(m \dot{R})-m R \dot{\phi}^{2}+\frac{d \Phi}{d R}=0 \\
& \frac{d}{d t}(m R \dot{\phi})=0
\end{aligned}
$$

Separating motions \quad in the plane $\mathrm{z}=0$ along each coordinate:

$$
\begin{aligned}
& \ddot{R}-R \dot{\phi}^{2}=-\frac{\partial \Phi}{\partial R} ; \quad \frac{d}{d t}\left(L_{z}\right)=0 ; \quad \ddot{z}=-\frac{\partial \Phi}{\partial z} \\
& 1
\end{aligned}
$$

net acceleration - centrifugal = gravity
$\$$ Vertical (z) motions
Since the disk is symmetric with respect to $\mathbf{z = 0}$:

$$
\left(\frac{\partial \Phi}{\partial z}\right)_{z=0}=0
$$

Consider small motions about the plane $\mathbf{z = 0}$:

$$
\ddot{z}=-\left(\frac{\partial \Phi}{\partial z}\right)_{z=0}-z\left(\frac{\partial^{2} \Phi}{\partial z^{2}}\right)_{z=0}=-z\left(\frac{\partial^{2} \Phi}{\partial z^{2}}\right)_{z=0}=-\nu^{2} z
$$

This results in a simple harmonic motion with (vertical) frequency v :

$$
z(t)=Z \cos \left(\nu t+\psi_{0}\right)
$$

For MW galaxy near the Sun: $v^{2}=4 \pi G \rho_{0} \rightarrow 2 \pi / v \sim 6.510^{7} \mathrm{yrs}$
$\sim 1 / 3$ of the circular period
*Radial motions

- Consider first the circular motion with $\mathbf{R}=$ const (it has $\mathbf{R}=\mathbf{R}_{\mathbf{g}}$, circular velocity v_{c} and Ω_{g}):

$$
-\left(\frac{\partial \Phi}{\partial R}\right)_{R_{g}}=\frac{V_{c}^{2}}{R_{g}}=R_{g} \Omega_{g}^{2}
$$

For non-circular orbits, the radial acceleration is given by:

$$
\begin{equation*}
\ddot{R}=R \dot{\phi}^{2}-\frac{\partial \Phi}{\partial R} \tag{4-2}
\end{equation*}
$$

where the $2^{\text {nd }}$ term on the right is the forcing term
-This can be written as

$$
\ddot{R}=\frac{\partial \Phi_{\text {eff }}}{\partial R} \quad \text { where } \quad \Phi_{\text {eff }}=\Phi(R ; z)+\frac{L_{z}}{2 R^{2}}
$$

and $\boldsymbol{\Phi}_{\text {eff }}$ is the effective potential

The effective potential behaves: at small R: sharp increase \rightarrow centrifugal barrier at large \mathbf{R} : slow increase minimum: at $\mathbf{R}=\mathbf{R}_{\mathbf{g}} \rightarrow$ circular orbit of the GC

$$
\left(\frac{\partial \Phi_{\mathrm{eff}}}{\partial R}\right)_{R_{g}}=0=\left(\frac{\partial \Phi}{\partial R}\right)_{R_{g}}-R_{g} \dot{\phi}_{g}^{2}=\left(\frac{\partial \Phi}{\partial R}\right)_{R_{g}}-\frac{V_{c}^{2}}{R_{g}}
$$

- Other orbits will oscillate around $\mathbf{R}_{\mathbf{g}}$

Consider the potential at $\mathbf{R}=\mathbf{R}_{\mathbf{g}}+\mathbf{x}$ (where $\mathbf{x}-$ small perturbation):

$$
\ddot{R}=\ddot{x}=-\left(\frac{\partial \Phi_{\mathrm{eff}}}{\partial R}\right)_{R_{g}}-x\left(\frac{\partial^{2} \Phi_{\mathrm{eff}}}{\partial R^{2}}\right)_{R_{g}}=-x\left(\frac{\partial^{2} \Phi_{\mathrm{eff}}}{\partial R^{2}}\right)_{R_{g}}=-\kappa^{2} x
$$

harmonic motion about the GC: $\quad x(t)=X \cos \left(\kappa t+\phi_{0}\right)$
with an epicyclic frequency \mathbf{k}, where

$$
\kappa^{2}=\left(\frac{\partial^{2} \Phi_{\text {eff }}}{\partial R^{2}}\right)_{R_{g}}=\left(\frac{\partial}{\partial R}\left(\frac{\partial \phi}{\partial R}\right)\right)_{R_{g}}+\frac{L_{z}^{2}}{R_{g}^{4}}=\left(R \frac{d \Omega^{2}}{d R}+4 \Omega^{2}\right)_{R_{g}}
$$

\& Azimuthal motion

Azimuthal acceleration $=0 \rightarrow L_{z}=\mathbf{R}^{2} \dot{\varphi}=$ const
In cylindrical coordinates, this means $\operatorname{2R} \boldsymbol{\varphi}+\mathbf{R} \boldsymbol{\varphi}=\mathbf{0}$
Since $L_{\mathbf{z}}=\mathbf{R}_{\mathrm{g}}{ }^{2} \Omega_{\mathrm{g}}=\mathbf{R}^{2} \Omega=$ const.: changes in $\mathbf{R} \rightarrow$ changes in Ω

Remember:

$$
\dot{\phi}=\frac{L_{z}}{R^{2}}=\frac{L_{z}}{\left(R_{g}+x\right)^{2}} \simeq \frac{L_{z}}{R_{g}^{2}}\left(1-\frac{2 x}{R_{g}}\right)=\Omega_{g}\left(1-\frac{2 x}{R_{g}}\right)
$$

Integration results in:

$$
\phi(t)=\Omega_{g} t-\frac{2 \Omega_{g} X}{\kappa R_{g}} \sin \left(\kappa t+\phi_{0}\right)
$$

$\rightarrow \phi(\mathrm{t})$ follows the GC with a small amplitude harmonic motion superposed

Taking \mathbf{y}-axis in the forward direction with the origin on the GC:
$\mathrm{y}=\mathrm{R}_{\mathrm{g}} \phi(\mathrm{t}) \rightarrow$

$$
y(t)=-\frac{2 \Omega}{\kappa} X \sin \left(\kappa t+\phi_{0}\right)
$$ the same $\mathbf{\kappa}$, but out of phase by 90°

Summarizing and taking $\phi_{0}=0$, we have:
$\mathrm{x}=\mathrm{X} \cos (\mathrm{kt})$
$y=-(2 \Omega / k) X \sin (k t)$
elliptical epicycle with radial/azimuthal axis ratio $\mathrm{K} / 2 \Omega$
epicyclic motion is retrograde
(Ptolemy's was prograde!)

for stars with the same $\mathbf{R}_{\mathbf{g}}$, the velocity ellipsoid is $\sigma_{\mathbf{R}} / \sigma_{\theta} \sim \mathbb{K} / 2 \theta$ for Keplerian potential: $\Omega \sim \mathbf{R}^{-3 / 2} \rightarrow \mathrm{~K}=\Omega$ closed ellipse centered at the ellipse focus with axis ratio 2:1 (Ptolemy's: $1: 1$ circles)
for flat rotation curve: $\Omega \sim R^{-1} \rightarrow \mathrm{k}^{2}=2 \Omega^{2}$
for solid body rotation: $\mathrm{k}=2 \Omega$
in general: $\Omega<\kappa<2 \Omega \rightarrow \kappa>\Omega$ and the epicycle is completed before rotation

$>$ Resonances

-Rotating patterns: observations show that spiral arms and stellar bars are density enhancements. Their patterns are neither stationary or move with the stars.
-Instead, they move with their own
 angular speed Ω_{p} called pattern speed
-Interactions of this pattern speed with epicyclic motion

*Orbits in a spiral pattern
Describe the spiral pattern as $\Phi+\delta \Phi$:

$$
\begin{equation*}
\boldsymbol{\delta} \boldsymbol{\Phi}(\mathbf{R}, \boldsymbol{\varphi}, \mathbf{t})=\boldsymbol{\delta} \boldsymbol{\Phi}(\mathbf{R}) \mathbf{e}^{\mathrm{i}(\mathbf{m} \varphi-\omega \mathbf{t})} \quad \mathrm{m}=0,1,2, \ldots \tag{4-4}
\end{equation*}
$$

At fixed \mathbf{R}, a point of a constant phase $=m \phi-\omega t$, so
$\dot{\varphi}=\frac{\omega}{\mathrm{m}} \equiv \Omega_{\mathrm{p}} \quad \leftarrow$ pattern frequency

This is how fast the pattern goes around

Using eq.(4-2) for radial oscillations:
We add perturbation given by eq.(4-4):

radial:

$$
\begin{equation*}
\ddot{\mathbf{R}}-\mathbf{R} \dot{\varphi}^{2}=-\frac{\partial \Phi}{\partial \mathbf{R}}-\frac{\partial \delta \Phi}{\partial \mathbf{R}} \cos (\ldots) \tag{4-5a}
\end{equation*}
$$

The same for azimuthal motion given by eq.(4-3): $2 \mathbf{R} \varphi+\mathbf{R} \varphi=\mathbf{0}$
$\ddot{R} \dot{\varphi}+2 \dot{R} \dot{\varphi}=m \delta \boldsymbol{\varphi}(\mathbf{R}) \sin (\ldots)$
azimuthal gradient
of perturbing potential
(4-5b)

To solve eqs.(4-5ab):

$$
\begin{aligned}
& . . .^{2}=-\frac{\partial \Phi}{\partial R}-\frac{\partial \delta \Phi}{\partial R} \cos (\ldots) \\
& R \ddot{\operatorname{R} \varphi}+2 \mathbf{R} \dot{\varphi}=\mathrm{m} \delta \Phi(\mathbf{R}) \sin (\ldots)
\end{aligned}
$$

use

$$
\begin{aligned}
& R=R_{0}+\delta R \\
& \varphi=\varphi_{0}+\delta \varphi
\end{aligned}
$$

and assume $\boldsymbol{\delta} \mathbf{A} \ll \mathbf{A}$ (amplitudes) \leftarrow good except at the resonance
Solution:

$$
\delta \mathrm{R}=\delta \mathrm{A} \frac{1}{\Delta} \cos \left[\mathrm{~m} \varphi_{0}+\mathrm{m}\left(\Omega_{0}-\Omega_{\mathrm{p}}\right) \mathrm{t}\right]
$$

where

$$
\begin{aligned}
& \Delta=\kappa_{\mathbf{0}}{ }^{2}-\mathrm{m}^{2}\left(\boldsymbol{\Omega}_{0}-\boldsymbol{\Omega}_{\mathrm{p}}\right)^{2} \\
& \boldsymbol{\delta} \mathrm{~A}=-\frac{\partial \boldsymbol{\delta} \Phi}{\partial \mathbf{R}}+\frac{2 \boldsymbol{\Omega}_{\mathbf{0}} \boldsymbol{\delta} \Phi(\mathbf{R})}{\mathbf{R}_{\mathbf{0}}\left(\boldsymbol{\Omega}_{\mathrm{p}}-\boldsymbol{\Omega}_{\mathbf{0}}\right)}
\end{aligned}
$$

Singularities at $\Delta=0 \quad \rightarrow$ Lindblad resonances
Singularity at $\Omega=\Omega_{\mathrm{p}} \rightarrow$ corotation resonance
-Corotation resonance: ϕ - component of the force is constant in stars frame

Stars that orbit at the pattern speed $\Omega_{*}=\Omega_{\mathrm{p}}$ experience a persistent non-axisymmetric perturbation

their response will build up
Can pump energy into either radial or azimuthal part
-Lindblad resonances: consider stars that complete exactly one epicycle between the passage of each arm
\rightarrow resonance interaction with each arm

$$
\downarrow
$$

epicyclic amplitude is amplified
-If the star moves with $\Omega>\Omega_{\mathrm{p}} \rightarrow$ star overtakes the arm If the star moves with $\Omega<\Omega_{\mathrm{p}} \rightarrow$ arm overtakes the star

Angular frequency of encountering the arms is $\mathrm{m}\left(\Omega_{\mathrm{p}}-\Omega\right)$

$$
\begin{aligned}
& \delta R= \delta A \frac{1}{\Delta} \cos \left[m \varphi_{0}+m\left(\Omega_{0}-\Omega_{p}\right) t\right] \\
& \Delta=\kappa_{0}{ }^{2}-m^{2}\left(\Omega_{0}-\Omega_{p}\right)^{2} \\
& \delta A=-\frac{\partial \delta \Phi}{\partial R}+\frac{2 \Omega_{0} \delta \Phi(R)}{R_{0}\left(\Omega_{p}-\Omega_{0}\right)}
\end{aligned}
$$

condition for a resonance:

$$
\mathbf{m}\left(\Omega_{\mathrm{p}}-\boldsymbol{\Omega}\right)= \pm \boldsymbol{\kappa}
$$

$$
\boldsymbol{\Omega}_{\mathrm{p}}-\boldsymbol{\Omega}= \pm \mathbf{\kappa} / \mathbf{m}
$$

Note that

$$
\Omega_{\mathrm{p}}-\Omega=-\kappa / 2
$$

is a special case of a two-armed ($\mathrm{m}=2$) spiral with $\Omega>\Omega_{\mathrm{p}}$
-There are two classes of Lindblad resonances:

$$
\begin{array}{ll}
\boldsymbol{\Omega}_{\mathrm{p}}-\boldsymbol{\Omega}=-\mathbf{\kappa} / \mathbf{2} & \text { Inner Lindblad resonance (ILR) } \\
{_{\mathrm{p}}-\boldsymbol{\Omega}=+\mathbf{\kappa} / \mathbf{2}} } & \text { Outer Lindblad resonance (OLR) }
\end{array}
$$

-To establish Lindblad and Corotation resonances: need to know
The pattern speed Ω_{p}
The rotation curve $\mathbf{v}_{\mathbf{c}}(\mathbf{R}) \rightarrow \Omega(\mathrm{R}), \mathbf{\kappa}(\mathrm{R})$
-For $\mathbf{m}=\mathbf{2}$: the resonance curves for nearly circular orbits are

-Different types of ILRs for various rotation curves ($\mathrm{m}=2$):

There can be $\mathbf{0 , 1 , 2}$ or more ILRs

By superposing many concentric ovals \rightarrow variety of spiral patterns:

Figure 3 Three kinematic density waves of spiral form (Kalnajs 1973), obtained by merely superposing some kinematic ring waves such as shown in Figure 2.

If $\Omega-\mathrm{k} / 2$ is independent of radius \rightarrow the spiral pattern will persist indefinitely, because all superposed ovals would precess at the same rate

In fact, $\Omega-\mathrm{k} / 2$ is nearly independent of radius in real disk galaxies over a range in \mathbf{R} !

Evolution of an overdense perturbation (gray patch) in a shearing disk which rotates counter-clockwise. The perturbation initially has a form of a leading spiral, but is sheared into a trailing one. The epicycle and the perturbation rotate in the same direction, so stars stay in the perturbation longer.

Density wave spirals should wind up 6 times slower than material arms
$\$$ Importance of resonances
Response changes at resonances: example of 1-D oscillator

Stellar orbits change orientation abruptly at the resonances:

Stellar density waves cannot propagate across the resonances

