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Laws of gas dynamics 

Hydrodynamical regime 

•in the ISM:  λ << size of the system 

m.f.p. 

•v—distribution  Maxwellian  T, P, r averaged over many                        
                                                     particles (macroscopic variables)   

•equations of motion (r,t) of gas using macroscopic parameters 



Conservation principles 

•derive equations of motion using conservation principles: 

mass, momentum, energy 

•conservation principle for quantity Π within volume V: 

rate of increase of Π 
           in V 

= net convection 
      into V 

+ net generation 
    rate in V 

•assume plane-parallel geometry: all variables are functions of x: 

x 

x x+dx 
P+dP 
ρ+dρ 
u+du 

P,ρ,u 

dVdx 



•mass conservation 
dxρΠ ≡

If no sources or sinks (in V): 
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Leaving  1st order terms only: 
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eq. of continuity 

This is equation  of mass conservation at a particular point r  
                                  (Eulerian system of coordinates) 

This equation can be written in Lagrangian form  

(5-1a) 



In Lagrangian form: 
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advection term 

convective derivative 
(carried with fluid element) 

In 3-D: 
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•Conservation of motion 

dxρuΠ ≡

Assume: gas pressure is the only force acting on the gas 
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Other forces: gravity, magnetic force, radiation, viscous forces 

(5-1b)  
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•Energy conservation 

Adiabatic flow:  volume element neither gains nor loses heat 
                         (by contact with surroundings, or by radiation, etc.) 

Change of internal energy = work on surroundings 

Entropy=const  P=Kργ where γ is ratio 
of specific heats 

If K=const  isentropic flow (γ=5/3) 

Isothermal flow: 
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•Sound waves 

Assume that gas which is uniform and at rest initially  
is perturbed: 
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(5-2a) 

(5-2b) 

u0 and gradient of ρ0 
(unperturbed) are equal zero!  



0
x
u

t
ρ

ρ
1 11

0

=
∂
∂

+
∂

∂

x
ρ

ρ
a

t
u 1

0

2
01

∂
∂

−=
∂

∂

Then, 

differentiating 

t∂
∂

and 

x∂
∂by by 

0
x
ρa

t
ρ

2
1

2
2

02
1

2

=
∂
∂

−
∂

∂
wave equation 

 its solution: wave velocity = a0  2 solutions: waves going to  
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(continuity eq.) (Euler eq.) 



Gravitational Jeans (in)stability 
λJ 

density ρ 

2

2 2

1 2 1 22

without pressure, collapse occurs in a free-fall time
4

3
a harmonic oscillator with frequency  = 4 3 

1 2 3 3
4 4 4 16ff

d r GM G r
dt r

G

t
G G

π ρ

ω π ρ

π π π
ω π ρ ρ

= − = −

   
= = =   

  

( )
1/ 2

6
3 310 yr

10 cmff
nt

−
 ≅  
 

Free-fall timescale: 

bubble: 



Jeans instability in the gas 
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•The hydro equations: 
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continuity: 

Euler: 

Poisson: 
•Linearize all the hydro equations,  
                                               using  
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(5-5a,b,c) 



Assume Jeans initial conditions 
(homogeneous ISM, no motion) 0v
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(5-6b) 



This leads to a wave eq.: 
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Its solution: ωt)xi(k
1 C(k)et)(x,ρ −⋅= plane wave 

Insert the solution into wave equation: 
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If ω2 < 0  the solution is unstable (grows exponentially!) 
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where kJ  is Jeans wavenumber  and JJ /k2πλ =
So perturbation is unstable, if 
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Jeans mass: 3/2
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Typical Jeans mass in the cold molecular phase of the ISM: 
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Analysis of Jeans instability:  

The obtained dispersion relation 

can be discussed in the limit of no gravity:   G  0 

22
s

2 kcω =  sound waves 

while in the “cold limit” of cs0:  

0
2 Gρ4πω −= free-fall condition (always unstable) 

In a general case: the frequency ω of perturbation is determined by a 
balance between stabilizing pressure and destabilizing gravity terms 
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