DYNAMICAL STATE
OF THE ISM

*Laws of gas dynamics
*Jeans Instability In the gas




»Laws of gas dynamics
“*Hydrodynamical regime

in the ISM: A << size of the system

I

m.f.p.

sv—distribution = Maxwellian € T, P, r averaged over many
particles (macroscopic variables)

sequations of motion (r,t) of gas using macroscopic parameters



“»*Conservation principles

ederive equations of motion using conservation principles:

sconservation principle for quantity I'T within volume V.

rate of increase of IT| _ ] net convection | | ) net generation
InV Into V rate in V

sassume plane-parallel geometry: all variables are functions of x:
dV->dx

P,p,ll | S

< X+dx
P+dP
p+dp
u+du



emass conservation

If no sources or sinks (in V):

%(pdx)=pu—(p+dp)(u+du)

Leaving 1%t order terms only:
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This Is equation of mass conservation at a particular point r
(Eulerian system of coordinates)

This equation can be written in Lagrangian form -



In Eulerian form:

In Lagrangian form:

> | (carried with fluid element)

|

advection term

ur }convective derivative




eConservation of motion

Assume: gas pressure is the only force acting on the gas

%(pudx):puz —(p-+dp)(u+du)? +P—(P+dP)

(@)}
=
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3 & momentum  momentum net change of
£ o enters leaves momentum due to
g. S applied force
g © 8u Gu 10P
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8t 8x p OX also called Eulereq.  (5-1b)

Other forces: gravity, magnetic force, radiation, viscous forces



In 3-D:

If additional force,
say for gravity:

(-pVP)

where (§-v =0 — Iincompressibility)




*Energy conservation

Adiabatic flow: volume element neither gains nor loses heat
(by contact with surroundings, or by radiation, etc.)

4

Change of internal energy = work on surroundings

4

Entropy:const > P:KpY where Y IS ratio
of specific heats

If K=const - isentropic flow (y=5/3)

Isothermal flow:

o _ KT

m



*Sound waves

Assume that gas which is uniform and at rest initially
IS perturbed:

u,and gradient of p,
(unperturbed) are equal zero!

Linear continuity eq.:

Linear momentum eq.:
(Euler)




Then,

differentiating Lo and
p, ot OX
(continuity eq.) (Euler eq.)
by 5 by [l

OX

wave equation (5-3)




> Gravitational Jeans (in)stability bubble:

without pressure, collapse occurs in a free-fall time
d°r ~GM  4zGp )

dtz 1 3
a harmonic oscillator with frequency @ =./47G p/3

B 7o 3 1/2_ 3 7« v
4 47Gp 16 Gp




»Jeans instability in the gas

*The hydro equations:

continuity: %-l—%'(p v)=0
dv

Euler: p—=f1 _VP
dt

where f=—pV®d
Poisson: AD =4xGp (5-4a,b,c)
sLinearize all the hydro equations, P=P,+P,, p=p,+p,, V=V,

using

where p,/p, <<1, etc.




Assume Jeans initial conditions
(homogeneous ISM, no motion)

Take KB of 560
ot
Take divergence of Ny _ _V(®, +P,/p,) (5-6b)

Use adiabatic motion

1 (Cszlpo) Ap,

Eliminate A® and from egs. >
ot




This leads to a wave eq.: t+

Its solution p, (x,t) = C(k)e'“* " plane wave
Insert the solution into wave equation:

o’ =c’k’-4nGp, (-7

Z

=~

If ®?> <0 - the solution is unstable (grows exponentially!)

Define:  k® <k,” =4nGp,/c,’ (5—38)
where Kk is Jeans wavenumber and A; =2n/K,
So perturbation is unstable, if  @/c,® = k? -k ,°

A2 >h,° =neIGp,



Jeans mass:

Typical Jeans mass in the cold molecular phase of the ISM:

‘lﬂ_ . T E;'j ':'5 2 s n —1,""3
M, = (T) P = (E) (3/2p1/2 ~ (2 Mo) (I] 2 km *-1_1) (..103 cn —3)




Analysis of Jeans instability:

The obtained dispersion relation [RSESE "G} IeT )

can be discussed in the limit of no gravity: G -2 0

2 21,2
- sound waves

while in the “cold limit” of c,=0:

free-fall condition (always unstable)

In a general case:
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