PROBLEM SET 2

Problem 1 (Disk potential)

The potential of a Kuzmin disk is given in cylindrical polar coordinates r, z by

$$
\Phi(r, z)=-\frac{G M}{\sqrt{r^{2}+(a+|z|)^{2}}} .
$$

(a). Does this potential correspond to that of a point? If yes, give the location of this point.
(b). Show that $\Delta \Phi=0$ everywhere except at $z=0$.
(c). Use the divergence theorem to find the surface density of Kuzmin disk.

Problem 2 (Virial theorem)

(a). If an isolated cluster of stars is initially in equilibrium, and a fraction f of its stars is suddenly removed at each radius, by what factor do the kinetic $\left(E_{k}\right)$ and potential $\left(E_{p}\right)$ energies change?
(b). If the initial potential energy is $E_{p 0}$, what is the starting energy of the cluster E_{0} ? What is the resulting energy of the cluster, E_{1} ?
(c). If $f>0.5$, the stars are no longer in equilibrium. Show that when the remaining stars come to a new equilibrium, the average distance between them changes and by what factor.

Problem 3 (Gauss Law)

(a). Use Gauss' law to derive an expression for the gravitational force in the z direction due to an infinite sheet of surface density Σ lying in the $x-y$ plane.
(b). A star has velocity $30 \mathrm{~km} \mathrm{~s}^{-1}$ perpendicular to the galactic plane as it crosses the plane, and is observed to have a maximal departure above the plane of 500 pc . Approximating the disk as an infinite gravitating sheet of matter, estimate its surface density Σ in $M_{\odot} \mathrm{pc}^{-2}$.

Problem 4 (Gravothermal Catastrophe)

Consider a system in which the particles interact through the potential $\Phi=A|\mathbf{r}|^{-\alpha}$, where A is a constant.
(a). Show, that for such a system, the virial theorem has the form

$$
2 K+\alpha W=0
$$

where K is the kinetic energy and W is the potential energy.
(b). For what values of α does the system have a negative heat capacity?

Problem 5 (Jeans Equations)

(a). Use the divergence theorem to find the gravitational potential at the height z above a 2-D uniform sheet of matter with surface density Σ.
(b). Show that the vertical force does not depend on z, and find $\Delta \Phi$.
(c). Suppose (as above) the mass of the Galaxy was all in a flat uniform disk. Write the equation of the vertical (z) equilibrium and use it to find the density $n(z)$ of stars, assuming they have a constant velocity dispersion σ_{z}. As in the Earth atmosphere, where the acceleration of gravity is also nearly independent of height, show that $n(z)$ drops by a factor of e as $|z|$ increases by $h_{z}=\sigma_{z}^{2} / 2 \pi G \Sigma$. Estimate h_{z} near the Sun, taking $\sigma_{z}=20 \mathrm{~km} \mathrm{~s}^{-1}$.

Problem 6 (Jeans Equations)

A spherical elliptical galaxy has a total density distribution

$$
\rho_{\mathrm{tot}}(R)=\frac{\rho_{0}}{1+R^{2} / a^{2}},
$$

as a function of radial distance R from its center, where ρ_{0} and a are constants (here the total density means the density including all stars, gas and dark matter).
(a). Show that the total mass $M(R)$ interior to a radius R has the form $M(R) \propto R^{3}$ for $R \ll a$ and $M(R) \propto R$ for $R \gg a$.
(b). Consider a population of massless test particles in the potential of this galaxy. Assume that this population is spherical, non-rotating, isothermal and isotropic, with velocity dispersion σ in each velocity component. What is the radial density distribution $\rho_{\mathrm{p}}(R)$ of this test particle population, expressed in terms of $M(R)$ and R ?
(c). Solve for $\rho_{\mathrm{p}}(R)$ in terms of R explicitly for large radii (i.e. for regions where $R \gg a$) to show that the density has a power law dependence on radius. What is the index of this power law?
(d). Give a physical interpretation of this index. What is the condition for the density distributions of the test particle population and the galaxy itself to have similar forms at large R ?

Problem 7 (Stellar Encounters)

The deflecting component of stellar velocity Δv_{\perp} is steadily increasing in multiple weak encounters. After time t, its square is given by

$$
<\Delta v_{\perp}^{2}>=\int_{b_{\min }}^{b_{\max }} n v t\left(\frac{2 G m}{b v}\right)^{2} 2 \pi b d b
$$

where all the variables and parameters have been defined in class.
(a). Computer simulations of galactic disks often confine all the particles to a single plane: instead of a volume density of stars we have a surface (number) density Σ. The term $2 \pi b d b$ in the above equation (for a 3-D case) is replaced by $2 d b$. Why?
(b). Show that now $t_{\text {relax }}$ does not depend on Λ, but only on $b_{\text {min }}$, and that $t_{\text {relax }} / t_{\text {cross }}=$ $v^{2} / 8 G R m \Sigma$, where R is the radius of the stellar system.
(c). If the mass density $m \Sigma$ is fixed, this ratio is independent of the number of simulation particles. How can this happen?

