BLACKBODIES

Definition

A blackbody is a theoretical object that absorbs 100% of the radiation that hits it. Therefore it reflects no radiation and appears perfectly black.
In practice no material has been found to absorb all incoming radiation, but carbon in its graphite form absorbs all but about 3%. It is also a perfect emitter of radiation. At a particular temperature the black body would emit the maximum amount of energy possible for that temperature. This value is known as the black body radiation. It would emit at every wavelength of light as it must be able to absorb every wavelength to be sure of absorbing all incoming radiation. The maximum wavelength emitted by a black body radiator is infinite. It also emits a definite amount of energy at each wavelength for a particular temperature, so standard black body radiation curves can be drawn for each temperature, showing the energy radiated at each wavelength. All objects emit radiation above absolute zero.

SOME EXAMPLES: Objects at around room temperature emit mainly infra-red radiation which is invisible. The sun emits most of its radiation at visible wavelengths, particularly yellow. A simple example of a black body radiator is the furnace. If there is a small hole in the door of the furnace heat energy can enter from the outside. Inside the furnace this is absorbed by the inside walls. The walls are very hot and are also emitting thermal radiation. This may be absorbed by another part of the furnace wall or it may escape through the whole in the door. This radiation that escapes may contain any wavelength. The furnace is in equilibrium as when it absorbs some radiation it emits some to make up for this and eventually a small amount of this emitted radiation may escape to compensate for the radiation that entered through the hole. Stars are also approximate black body radiators. Most of the light directed at a star is absorbed. It is therefore capable of absorbing all wavelengths of electromagnetic radiation, so is also capable of emitting all wavelengths of electromagnetic radiation. Most approximate blackbodies are solids but stars are an exception because the gas particles in them are so dense they are capable of absorbing the majority of the radiant energy.