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Weyl problem and Casimir effects in spherical shell geometry
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We compute the generic mode sum that quantifies the effect on the spectrum of a harmonic field when a
spherical shell is inserted into vacuum. This encompasses a variety of problems including the Weyl spectral
problem and the Casimir effect of quantum electrodynamics. This allows us to resolve several long-standing
controversies regarding the question of universality of the Casimir self-energy; the resolution comes naturally
through the connection to the Weyl problem. Specifically we demonstrate that in the case of a scalar field obeying
Dirichlet or Neumann boundary conditions on the shell surface the Casimir self-energy is cutoff dependent while
in the case of the electromagnetic field perturbed by a conductive shell the Casimir self-energy is universal. We
additionally show that an analog nonrelativistic Casimir effect due to zero-point magnons takes place when a
nonmagnetic spherical shell is inserted inside a bulk ferromagnet.
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I. INTRODUCTION

Many physics problems require the evaluation of the sum

Z(Q) =
∑

α

F (qα; Q) ≈
∫ ∞

0
F (q; Q)G(q)dq, (1)

where qα is the wave-vector spectrum for a harmonic field
confined to a region and F (q; Q) is a function that goes to
zero for q � Q monotonically and fast enough that the mode
sum converges [the essence of the second step in (1) will
be explained shortly]. The parameter Q is the cutoff wave
vector whose physical meaning depends on the system in
question. When the function F is the contribution of a mode to
a thermodynamic property of a harmonic field of wave vector
q such as the entropy, energy, or free energy, the corresponding
sums (1) describe the thermodynamics of black-body radiation
in a cavity or, equivalently, the thermodynamics of a harmonic
solid [1]. Here the Planck distribution enters the function
F (q; Q) guaranteeing the convergence of the sum (1) and
the temperature T serves as the wave-vector cutoff Q. For
a macroscopic region of typical size a the condition T � 1/a

is satisfied and there are many terms in the 1/a < qα < T

range contributing to the mode sum.
The function F can also represent the zero-point energy of a

harmonic field with linear dispersion law; however it is useful
to amend the dependence F = q/2 at large wave vectors so
that F goes to zero at q large. This assures that the sum (1)
converges, and helps classify and resolve the divergences at
high wave vectors that might otherwise occur; physically this
means that a material boundary surrounding the region in
question becomes invisible to short-wavelength radiation [2,3]
and thus does not perturb the spectrum at highest wave vectors.
In this example the cutoff wave vector Q is a property of the
material of which the boundary is constructed. Mode sums
like (1) are also encountered in Fermi systems [1].

In a macroscopic system the discrete spectrum can be
approximated by a continuous one and characterized by a
density of states (DOS) G(q) so that the mode sum can be
represented as an integral [1] as shown in the second step
in (1). The function G(q), to be referred to as the Weyl DOS,
represents the continuum approximation to the exact DOS

G(q) = ∑
q δ(q − qα); it plays a central role in the physics of

finite-sized systems. The significant feature of this replacement
is that G is independent of F : it encodes the physics of the
field and the boundary condition, while F is the specific aspect
of the system that is being studied.

The large-q behavior of the Weyl DOS G(q) can be inferred
from the behavior of Z(Q) for large cutoff by inverting the
integral transform (1). These leading terms, known as the
Weyl series [4], have geometric interpretation. The Weyl series
is the origin of the divergences that occur in attempts to
calculate the Casimir effect [2,5] without use of a cutoff; such
divergences can represent real effects of the presence of the
physical cutoff Q [6–12]. Even though the connection between
the Weyl problem and the Casimir problem has been noted
previously, numerous investigations calculating the Casimir
energy [13–19] seem to treat the cutoff-dependent terms as
mathematical artifacts. The latter, in a multitude of cases,
can be hidden by a regularization procedure. However there
is a class of geometries (spherical shells in even number of
dimensions, separate contributions of interior and exterior
modes) when regularization schemes fail, and the result is
presented in a formally divergent form obscuring its physical
meaning. As can be seen from our discussion, all cutoff-
dependent terms have real physical meaning explainable in
terms of the Weyl problem.

We must mention at this point that an objection against
the connection between the Weyl and Casimir problems was
put forward by Candelas [20]; below by analysis of the
general spectral problem (1) that includes both the Weyl and
Casimir problems as special cases, Candelas’s objection is
refuted.

Since the Weyl DOS G(q) is independent of the cutoff
procedure, it can be extracted from the mode sum calculated
using any convenient function F (q). Kac [21] and Stewartson
and Waechter [22] demonstrated the utility of the Gaussian
function F = exp(−q2/Q2) and applied it to the case of
a two-dimensional region. However the exponential F =
exp(−q/Q) and power-law F = q−s choices are just as good.
The latter is employed in the ζ -function regularization method
[23]; there is no cutoff scale Q, and one studies instead the
role played by the parameter s.
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The goal of this paper is to demonstrate how to compute
the mode sum for generic F (q) and thus to infer the change in
the DOS due to the insertion of a three-dimensional spherical
shell into vacuum. This will lead to some general observations,
which we believe are relevant to other geometries than the
spherical shell: (1) the geometric terms in the Weyl DOS
are the origin of the cutoff-dependent parts of the Casimir
energy, and thus are real physical properties of the problem that
cannot be regulated away; (2) cutoff-dependent contributions
to the Casimir energy are not present for the case of the
electromagnetic field (but generally present for problems
involving a scalar field); (3) the change in the DOS for the
electromagnetic case vanishes faster than any power of 1/q.
Some of these claims have been made previously, but have not
been fully accepted.

II. ONE-DIMENSIONAL GEOMETRY

To illustrate the concepts we begin with an example of
a one-dimensional interval of length a and a scalar harmonic
field satisfying the Dirichlet boundary conditions at the interval
ends. The spectrum is given by qn = πn/a,n = 1,2, . . . . Then
employing the Euler-Maclaurin summation formula [24] the
mode sum (1) can be transformed into

Z(Q,a) =
∞∑

n=1

F
(πn

a

)

= a

π

∫ ∞

0
F (q)dq − F (0)

2

− πF ′(0)

12a
+ π3F (3)(0)

720a3
− · · · (2)

assuming that F (y) is not singular at the origin and that it
and all of its derivatives vanish at infinity. In view of Eq. (1)
this is consistent with the generalized Weyl expansion of the
form

G(q) = a

π
− δ(q)

2
+ πδ′(q)

12a
− π3δ(3)(q)

720a3
+ · · · (3)

with the understanding that the δ function and its derivatives
are only used as a shorthand to indicate that the mode sum is
only sensitive to aspects of the long-wavelength part of F (q).

In this example the first two terms of the Weyl expansion (3)
have geometrical relevance: the leading term is proportional
to the one-dimensional “volume” a; the corresponding term of
the mode sum (2) is the only one that requires a cutoff. The
next order δ-function term represents the effect of the edges
of the interval. Our expression (3) contains more terms than
usually kept [4]; typically one keeps only the geometric terms
and deals with the rest separately. Our attitude here is that the
DOS can have as many terms as needed as long as for any
physical quantity the outcome can be presented in the integral
form like in Eq. (1).

The coefficient of the second term in (2) [which gives rise to
the δ-function term in (3)] has a special place within the theory
because it does not depend on the wave-vector cutoff Q or on
the macroscopic length scale a; it is just due to the presence of
the boundary. We will call this coefficient the Kac number K;
apparently this number was first computed (in any context) by

Kac [21] who found that K(D)
d=2 = 1/6 for a simply connected

two-dimensional region enclosed by a smooth Dirichlet curve.
For the one-dimensional Dirichlet interval Eqs. (2) and (3)
imply that K(D)

d=1 = −1/2. The Kac number gives geometrical
information about the boundary and its topology. The Kac
term does not contribute into the zero-point energy, but it
has other measurable consequences because K reflects the
change in the number of states due to the introduction of a
boundary. Then the classical equipartition theorem [1] implies
that the energy of a region contains a universal KT term [7];
in one dimension the −T/2 piece in the energy is the leading
finite-size contribution.

The derivative terms in (2) and (3) also have a special place
within the theory because they only depend on the macroscopic
length scale a and do not depend on the cutoff. They are
responsible for the Casimir effect and its generalizations. The
generalized Casimir effect will be defined as a change of the
value of the mode sum as a result of the introduction of a
boundary or boundaries. For example, the change of the mode
sum as a result of inserting into vacuum of two Dirichlet points
separated by a distance a will be given by

�Z(Q,a) = −F (0) − πF ′(0)

12a
+ π3F (3)(0)

720a3
− · · · (4)

because the mode sum for the vacuum contains only the
leading term of (2); the first term is due to the insertion of
two Dirichlet points. Choosing F (q → 0) → q/2 we recover
the well-known −π/24a Casimir attraction [25] given by
the second term of (4). We also note that if there were a
definite function F (q) that we were studying which had a
nonzero third derivative at zero wave vector, Eq. (4) would
describe the consequences which would be an example of
generalized Casimir effect. Since the mode sum (4) only
contains odd derivatives of F , the generalized Casimir effect
is absent for any function that for small wave vectors
vanishes as an even power of the wave vector. Specifically,
this rules out the possibility of the Casimir effect with
“nonrelativistic” dispersion law F (q → 0) ∝ q2; the same
conclusion holds in the parallel plane geometry in three spatial
dimensions [19,26]. However below we will demonstrate a
possibility of a nonrelativistic Casimir effect in spherical shell
geometry.

The mode sum (4) is consistent with the Weyl expansion of
the form

�G(q) = −δ(q) + πδ′(q)

12a
− π3δ(3)(q)

720a3
+ · · · . (5)

Since the original Dirichlet interval can be viewed as a one-
dimensional sphere while the configuration with two Dirichlet
points represents a one-dimensional spherical shell (both of
radius a/2) it is instructive to compare the expression for the
DOS (5) accumulating the effect of the field modes both inside
and outside of the Dirichlet interval with that given by Eq. (3)
which only includes the effect of the interior modes. We then
observe that the geometric part of the DOS given by the first
two terms of (3) and by the first term of (5) is the sum of local
effects: the bulk a/π term present in the original DOS (3)
is canceled between the interior and exterior modes while
the effect of the edges given by the δ-function term in (3) is
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doubled. This is not true of the Casimir term, which is a global
property [9,12].

III. THREE-DIMENSIONAL GEOMETRY

We now proceed to a calculation of the counterparts of
Eqs. (4) and (5) for a spherical shell in three dimensions
starting with the scalar problem which is technically more
involved than its electromagnetic counterpart.

A. Scalar problem

Special cases of the general mode sum have been considered
previously:

(i) The sum (1) over the modes of a scalar field inside a
Dirichlet sphere was first calculated by Waechter [27], using
the choice F (q) = exp(−q2t) (Q ≡ 1/

√
t). The geometric

parts of the DOS for a Dirichlet shell then can be extracted by
use of the additive property of the geometric parts of the DOS.
Below we will calculate the generic mode sum (1) and the
DOS directly in the shell geometry and find some difference
from Waechter’s results.

(ii) The mode sum for the case F = q/2 corresponds to
the zero-point energy of a scalar field. The change in the
zero-point energy resulting from the imposition of a new
boundary is the scalar Casimir effect. This was first studied
for the case of a spherical shell in three dimensions by Bender
and Milton [13]. The leading terms of the Weyl DOS give rise
to ultraviolet divergences which were eliminated by means of
a regularization technique. In order to study these divergences
we will introduce a cutoff, so that F = (q/2)C(q/Q) [where
C(q/Q) is small for large argument]. The divergences become
cutoff-dependent terms; we will argue that these terms have
physical meaning.

1. Contour integral representation of the mode sum

In spherical geometry the modes are not spaced regularly
in the wave vector, and their determination entails solving a
transcendental equation. We can make use of this equation to
represent the mode sum as a contour integral. If qn and qp are
the zeros and poles, respectively, of a function ϕ(q), the sum of
the values of a function F (q) over these sets can be calculated
by

1

2πi

∮
C

F (q)
d

dq
ln ϕ(q)dq =

∑
qn

F (qn) −
∑
qp

F (qp), (6)

where the contour C encloses the values being included in the
sum; the function F (q) must be analytic inside the contour
[28,29], and we assume that it is very small where the contour
cuts the real q axis.

We wish to calculate the change in the mode sum arising
from the introduction into a previously empty space of a
spherical shell of radius a that imposes Dirichlet boundary
conditions. This will be written in the form

�Z(Q,a) =
∞∑
l=0

2ν
∑

k

[F (ql,k) − F (ql,k)]

=
∞∑
l=0

νZν(Q,a), (7)

where the factor 2ν = 2l + 1 accounts for mode degeneracy,
ql,k and ql,k are the spectra of the system with and without the
shell, l labels the relevant spherical harmonic and the order of
the corresponding Bessel function, and k labels the successive
modes for given l.

To use the contour representation (6) to calculate the partial
sum Zν(Q,a) we construct the function ϕ(q) that vanishes
when q is a mode wave vector of the modified system and
has poles when q is a mode wave vector of the unperturbed
system. To avoid dealing immediately with the complications
of a continuous spectrum, consider the modes of a scalar field
interior to a large sphere of radius b (with Dirichlet boundary
conditions on the sphere), and the change in this spectrum
caused by the introduction of a concentric Dirichlet shell of
radius a < b. Then

ϕν(q) = πqa
[
Jν(qb)H (1)

ν (qa) − Jν(qa)H (1)
ν (qb)

]Jν(qa)

Jν(qb)
,

(8)

where Jν(z) and H (1)
ν (z) are the Bessel and Hankel functions,

respectively [24]. The wave vectors of the modes interior to the
inner sphere are the zeros of the factor Jν(qa), and similarly the
modes of the unpartitioned sphere are the zeros of Jν(qb) (and
the poles of ϕ); the Bessel function combination vanishes when
q is the wave vector for a mode confined to the region between
the two spheres. The factor πqa has been introduced so that
ϕ approaches unity for large imaginary q. This introduces a
spurious mode at q = 0, which should be ignored.

When q has an imaginary part and b � a, Jν(qb) is
exponentially large and H (1)

ν (qb) is exponentially small, so
that ϕ reduces to πaqJν(qa)H (1)

ν (qa). In this way the limit
b → ∞ can be taken. The net effect is the replacement
[Jν(qb)H (1)

ν (qa) − Jν(qa)H (1)
ν (qb)]/Jν(qb) → H (1)

ν (qa).
Setting q = iνy/a, the partial sum Zν(Q,a) now has the

form

Zν =
∮

Imy>0

F (iνy/a)

πi

d

dy
ln[2νyIν(νy)Kν(νy)]dy. (9)

The original integration contour C encloses the positive real
q axis (but not including the origin, to exclude the spurious
mode) in the counterclockwise direction. We can take it to
enclose the whole right half plane Req > 0, which in the new
variables is the upper half plane Imy > 0. The part of the
contour that lies at large Imy makes no contribution because
the cutoff function is very small there. This is similar to the
starting point of others [15], but we have left this in the form
of a contour integral. We observe that the function F (q),
which goes to zero for large real q, becomes F (iyν/a) on
the imaginary axis, and is not necessarily a “cutoff” function
anymore; in particular, the exponential function has constant
magnitude. For this reason it is important to keep the whole
contour.

We introduce the uniform asymptotic expansion of Debye
[30] valid for ν � 1:

ln[2ν(1 + y2)1/2Iν(νy)Kν(νy)]

= 1

8ν2

{
1

1 + y2
− 6

(1 + y2)2
+ 5

(1 + y2)3

}
+ R(y,ν).

(10)
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The remainder function R(y,ν) is of order ν−4 for large ν

and of order y−4 for large y. It gives a finite contribution
to (7) and thus may be disregarded while we consider the
more problematic leading terms. With this approximation

Zν ≈
∮

Imy>0

F (iνy/a)

πi

d

dy

[
ln

y√
1 + y2

+ 1

8ν2

{
1

1 + y2

− 6

(1 + y2)2
+ 5

(1 + y2)3

}]
dy. (11)

We observe that the left-hand side of Eq. (10) has a branch cut
along the imaginary y (real q) axis, while the only singularity
of the integrand of Eq. (11) inside the contour is at y = i

(that is, at q = ν/a in terms of the original variables); it is a
superposition of poles of multiplicity 1, 2, and 3. This gives a
good approximation to the integrand for the relevant case that
y is real. Some algebra leads to

�Z(Q,a) = −
∞∑
l=0

νF

(
ν

a

)
+ 1

64a

∞∑
l=0

[
−F ′

(
ν

a

)

+ 9ν

a
F ′′

(
ν

a

)
+ 5ν2

a2
F ′′′

(
ν

a

)]
+ · · · , (12)

where the primes indicate differentiation with respect to the
argument of F .

Similar to the one-dimensional example studied above, the
mode sum (12) can be understood with desired accuracy with
the help of appropriate generalization of the Euler-Maclaurin
summation formula [24]

∞∑
l=0

f

(
l + 1

2

)
=

∫ ∞

0
f (x)dx + 1

24
f ′(0)

− 7

5760
f ′′′(0) + · · · (13)

with the result

�Z(Q,a) = −a2
∫ ∞

0
F (q)qdq − F (0)

24
+ 17F ′′(0)

1920a2
+ · · · ,

(14)

where we restricted ourselves to the derivative terms whose
order does not exceed the second.

2. Analysis of the mode sum

The result (14) is consistent with a change in the DOS of
the form

�G(q) = −a2q − δ(q)

24
+ 17δ′′(q)

1920a2
+ · · · . (15)

There is no bulk term proportional to a3 in (14) and (15)
because the volume of the system is not changed by the
insertion of the shell. Even though approximations were made,
the first two terms of (15) are exact: the second of the sums
in (12) only contributes to the last term of (14) which also
receives contribution from the first sum in (12). Consistent with
Weyl’s expansion, the leading terms of (14) have geometrical
interpretations.

The first term is proportional to the area of the shell.
Waechter [27], considering only the modes inside the shell,
obtained a result half as large (in our evaluation, the shell
perturbs the modes on both sides; the results are in agreement).
This term has played a role in previous treatments of the
Casimir energy: when F (q) = q/2 for all q, the mode sum (12)
becomes a divergent expression. In previous publications
[13,15] it was evaluated (to zero!) by employing the ζ

regularization technique. We will discuss this approach below.
The Kac number [the coefficient of δ(q)] isK(D)

d=3 = −1/24;
it is negative because the modes of wavelength larger than a

have been suppressed by the introduction of the shell. Modes
inside and outside the shell are equally affected, so that a
calculation that considers only the modes inside the sphere
would give a Kac term that is half as large [31]. Waechter’s
calculation [27] overlooks the Kac number.

We observe that the first derivative term is absent from
Eqs. (14) and (15) which is an indication that the cutoff-
independent part of the Casimir effect has its origin in the
remainder term R(y,ν). Since this term does not require a
cutoff, the existing treatment [13] is adequate and will not be
repeated here. Thus the Casimir self-energy of the Dirichlet
shell is given by [11]

E (D) = −a2

2

∫ ∞

0
q2C(q/Q)dq + BM

a
, (16)

where we wrote F (q) = (q/2)C(q/Q) with C(q/Q) rep-
resenting the physical cutoff function determined by the
transmission properties of the boundary and satisfying the
conditions C(0) = 1 and C(∞) = 0. The 1/a dependence
of the cutoff-independent term of the self-energy (16) is
dictated by dimensional analysis, and the numerical constant
BM was computed by Bender and Milton [13]. The leading
cutoff-dependent term of the self-energy has to be viewed as
contributing (−1/8π )

∫ ∞
0 q2C(q/Q)dq � −Q3 into the bare

coefficient of the surface tension of the shell, considered as
material membrane. We will see below that for the special
case of electromagnetism this term does not appear. However,
for the scalar field theory with Dirichlet boundary condition
this will give rise to an outward stress on the sphere surface;
without a cutoff, it would be an infinite stress. This realization,
originally due to Deutsch and Candelas [9,20], was recently re-
expressed by Graham and co-workers [32] and by Barton [33].
The implication is that in an experimental situation, a curved
boundary might give rise to a cutoff-dependent contribution
to the physically measurable Casimir stress [34]. However,
it should be noticed that a cutoff as large as Q = 108 m−1

(equivalent to the UV for light) would only give a stress
of order 0.01 N/m, to be compared with 0.5 N/m for liquid
mercury [35]: the apparent divergence comes from taking the
mathematics too seriously.

Neumann boundary conditions for the scalar field can
be discussed in the same way. The boundary condi-
tion replaces Iν(y) by

√
yd/dy[

√
yIν(y)] and Kν(y) by√

yd/dy[
√

yKν(y)], and leads to an expression for the change
in the density of states similar to Eq. (15)

�G(q) = a2q + 7δ(q)

24
− 97δ′′(q)

1920a2
+ · · · . (17)
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Since the effect of Neumann boundary conditions is to remove
a constraint (continuity of the field across the shell) rather
than to add one, every term has the opposite sign relative to
the Dirichlet case. Similar to the Dirichlet case the Casimir
self-energy is dominated by the cutoff-dependent contribution
proportional to the area of the sphere.

3. Nonrelativistic Casimir effect

Since Eqs. (14) and (15) contain second-order derivative
terms, they demonstrate the possibility of a nonrelativistic
Casimir effect. Since the nonrelativistic Casimir effect of
quantum electrodynamics is exponentially suppressed by the
rest energy of elementary particles, here we discuss its
condensed matter analog. Even though the most interesting
universal part of the effect, as explained below, is small
compared to its cutoff-dependent piece, the calculation is of
interest as a proof of principle and because the overall effect
is not small.

Spin waves in ferromagnets are zero chemical poten-
tial Bose excitations having a dispersion law whose long-
wavelength limit is “nonrelativistic,” ω = γ q2 [36]. Then the
zero-point energy per mode is ω/2 = γ q2/2. Let us now
assume that there is a nonmagnetic spherical surface of radius a

(impenetrable to magnons) embedded inside bulk ferromagnet.
The change in the zero-point energy due to the presence of the
sphere can be found by substituting F (q) = (γ q2/2)C(q/Q)
into Eq. (14)

E (D)
nr = −a2γ

2

∫ ∞

0
q3C(q/Q)dq + 17γ

1920a2
. (18)

As in previously studied cases, the effect is dominated by the
leading cutoff-dependent term reducing the bare coefficient of
surface tension of the surface by an amount of the order γQ4.
The subleading term manifests itself as a universal finite-size
correction with the γ /a2 dependence dictated by dimensional
analysis. The higher-order terms of the Debye expansion do
not contribute anything further.

4. Connection to the ζ -function regularization method

The ζ -function regularization method evaluates the mode
sum for the choice F (q) = q−s . Its connection to the physical
cutoff approach based results has a large literature [37]; below
this relationship is discussed in the spherical shell geometry.
For sufficiently large s, the sums and integrals are convergent
at large q; the result, referred to as the spectral ζ function, is
analytically continued to physically relevant s. The relativistic
and nonrelativistic Casimir energies and the Kac number
are the s = −1, s = −2, and s = 0 cases, respectively. For
example, consider the evaluation of the sum (12). With the
choice F (q) = q−s , this becomes

�Z(s,a) = −asζ

(
s − 1,

1

2

)

− s2as

64
(5s + 6)ζ

(
s + 1,

1

2

)
+ · · ·

= − as(2s−1 − 1)ζ (s − 1)

− s2as

64
(5s + 6)(2s+1 − 1)ζ (s + 1) + · · · , (19)

where ζ (x,y) and ζ (x) are the Hurwitz and Riemann ζ

functions, respectively [30]. Although the sum is not con-
vergent for s < 2, the ζ functions are defined by analytic
continuation, and for physically interesting cases the spectral
ζ function (19) reproduces all previously found universal
results. Indeed, employing ζ (−1) = −1/12, ζ (−2) = 0, and
ζ (−3) = 1/120 [30] we find �Z(−1,a) = 0 (for the ordinary
relativistic Casimir energy), �Z(−2,a) = 17/960a2 (for the
γ /2 coefficient of the nonrelativistic Casimir energy in (18)),
and �Z(0,a) = −1/24 [for the Kac number appearing in
Eqs. (14) and (15)].

The cutoff-dependent terms are also represented in the
spectral ζ function. Equation (19) has a pole of residue −a2

at s = 2 which corresponds to the leading cutoff-dependent
term in the mode sum (14). Indeed, evaluating the latter
with the choice F = q−s and lower integration limit q =
ε (because there is a lowest wave-vector mode) we find
−a2ε2−s/(s − 2) which is a pole of residue −a2 at s = 2
in agreement with the pole structure of (19). We claim
that in general the cutoff-dependent terms in a mode sum
are represented by the poles of the spectral ζ function that
have to be bypassed on the way from s > 2 (or wherever
the sums and integrals actually converge) to the physical
case that is being studied (s = −1, s = −2, or s = 0 in
the above examples). Specifically, a pole of residue A at
s = σ signals the presence of an Aqσ−1 piece in the DOS
which via (1) implies the presence of cutoff-dependent
contribution into the mode sum. We will insist that the cutoff-
dependent terms have physical meaning; they are a part of the
Casimir energy (or whatever property is being studied) that is
larger than the cutoff-independent contribution that is usually
calculated.

This connection explains why the ζ regularization fails for
the calculation of the scalar Casimir effect due to a Dirichlet
circle [13]. The value of the Casimir term should be given by
the case s = −1 for the spectral ζ function �Z(s); however
it has a pole there. The existence of this pole is directly
related to the logarithmically divergent �Z(Q) found by
Sen [38].

With this understanding, the ζ regularization is a powerful
method for evaluating the mode sum. For example, suppose
that (for the case of a spherical Dirichlet shell introduced
into a scalar field) we wished to evaluate the change in the
mode sum for the function F (q) = q1/2, which is the case
s = −1/2 of the general problem F (q) = q−s . The singular
behavior at q = 0 is not consistent with the assumptions
of the Euler-Maclaurin expansion, so (15) does not apply.
Since going from large s to the case of interest, s = −1/2,
one encounters a pole at s = 2, there exists a corresponding
cutoff dependent contribution. As above we will have to
introduce a physical cutoff function C. The value of (19)
at s = − 1

2 is the cutoff-independent part. Thus for this
example

�Z(Q,a)

= − a2
∫

q3/2C(q/Q)dq − a−1/2

[
(2−3/2 − 1)ζ

(
−3

2

)

+ 7(
√

2 − 1)

512
ζ

(
1

2

)]
. (20)
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B. Electromagnetic problem

The most relevant mode sum problems involve finding
the counterparts to Eqs. (14) and (15) for the case of
electromagnetic vacuum perturbed by a conductive shell.

1. Background

Boyer [39] demonstrated that the Casimir energy for a
spherical shell varies as 1/a and gives an outward stress on
a sphere; his result is cutoff independent. Boyer’s finding
has been confirmed in several complementary calculations
[7,15,40].

The Weyl and Casimir problems for the case of elec-
tromagnetic field were considered by Balian and Bloch
and by Balian and Duplantier [6,7]. Their conclusion was
that the Casimir energy for an arbitrarily shaped perfectly
conducting shell in the electromagnetic case is in general
cutoff independent: the differing boundary conditions for
electric and magnetic fields give canceling contributions to
the leading terms of the mode sum, and thus are a special
property of the vector character of the electromagnetic field.
They also showed that the Kac number for this problem can
be calculated as a surface integral over the local curvatures
κ1,2,

K = 1

128π

∫
dσ

(
3κ2

1 + 3κ2
2 + 2κ1κ2

) − n, (21)

where n is the genus of the surface, which can also be written
as an integral of the surface curvature [41]:

1 − n = 1

4π

∫
dσκ1κ2. (22)

For the sphere this gives K = 1/4. In the high-temperature
limit the energy of a conductive shell is given by KT as a
consequence of the equipartition theorem.

However, Candelas [20] reanalyzed the problem of the
conducting shell and argued that there is a cutoff-dependent
contribution to the Casimir energy of a conductive shell which
cannot be explained in terms of the Weyl problem; he finds
that at zero temperature there is a contribution involving the
surface integral that is quadratic in the curvatures (and thus
can be written in terms of K and n). Below, by computing
the generic mode sum which encompasses both the Weyl and
Casimir problems, we settle the controversy by refuting the
statement of Candelas [20].

2. Analysis of the mode sum

A derivation of an expression for the Casimir energy
of the spherical shell beginning from the contour integral
representation (6) was given by Nesterenko and Pirozhenko
[15]; its generalization to the case of the generic mode
sum requires only a few changes. Therefore we only quote
counterparts of Eqs. (7) and (9),

�Z (EM)(Q,a) =
∞∑
l=1

νZ (EM)
ν (Q,a), (23)

Z (EM)
ν =

∮
Imy>0

F (iνy/a)

πi

d

dy
(ln{1 − [σ ′

ν(νy)]2})dy, (24)

where

σν(y) = yIν(y)Kν(y) (25)

and the prime in (24) indicates differentiation with respect to
the argument of σν(y). If we choose F (q) = (q/2) exp(−q/Q)
then Eqs. (23)–(25) reduce to an expression for the energy
analyzed by Milton, DeRaad, and Schwinger [40].

The subsequent analysis mirrors the steps undertaken in
treating the scalar version of the problem. In the present case
the Debye expansion (10) amounts to the approximation [40]

[σ ′
ν(νy)]2 ≈ 1

4ν2(1 + y2)3
(26)

for ν large. Evaluating the resulting contour integral

Z (EM)
ν ≈ −

∮
Imy>0

F (iνy/a)

4πiν2

d

dy

(
1

(1 + y2)3

)
dy (27)

and substituting the outcome into (23) we find the electromag-
netic counterpart of Eq. (12),

�Z (EM)(Q,a) = − 1

32a

∞∑
l=1

[
3F ′

(
ν

a

)
− 3

ν

a
F ′′

(
ν

a

)

+ ν2

a2
F ′′′

(
ν

a

)]
+ · · · . (28)

We see that Eq. (28) does not have an analog of the first sum
in (12), indicating that a formal (Q = ∞) treatment would
face weaker divergences than in the scalar case. If we choose
F (q) = q/2 for all q, then Eq. (28) reduces to the divergent
expression for the Casimir energy found by Nesterenko and
Pirozhenko [15]. They eliminated the divergence through use
of the ζ -function regularization method, leading to a universal
1/a result. However, the evaluation is even simpler if F (q)
contains an ultraviolet cutoff, because then the sum is always
convergent.

To apply the Euler-Maclaurin summation formula (13) to
Eq. (28), write

∞∑
l=1

[· · ·] ≈
∞∑
l=0

[· · ·] − 3F ′(0). (29)

Then the mode sum (28) becomes

�Z (EM)(Q,a) = F (0)

4
+ 3F ′(0)

32a
+ · · · . (30)

The noteworthy features of this expression, compared to
its scalar counterpart (14), are lack of the F ′′(0) term; the
possibility of taking the limit of infinite cutoff scale; and the
lack of dependence on the form of the cutoff function itself.
The cutoff function did play a role, however: from the large ν

and y dependencies of (26) we can see that in the absence of the
cutoff function, the integral (24) converges and the sum (23)
diverges. The effect of the cutoff function is to prevent the
change in variables that would allow doing these calculations
sequentially.

Inclusion of higher-order contributions from the Debye
approximation in Eq. (26) will allow evaluation of further
terms in (30). These also allow the limit of infinite cutoff to be
taken. The implication is that for the electromagnetic problem
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the change in mode sum of F (q) = qn exp(−q/Q) is cutoff
independent for all n. This in turn means that

Z (EM)(∞) =
∫ ∞

0
qnG(q)dq (31)

is finite for all n, so that the DOS must fall off faster than any
power of q.

Candelas’s treatment of this problem differs in that he
treats specifically the case F (q) = (q/2) exp(−q/Q), and then
converts the contour integral into an integral over the imaginary
axis. This is valid if Q is finite, but he then tries to discuss
the Q = ∞ limit before doing the sum. As can be seen
from Eq. (28), this gives a divergent expression. The origin
of this failure is that the approximation Eq. (26), though
sufficiently accurate for real y, fails where the contour crosses
the imaginary y (real q) axis. The original expression (in terms
of Bessel functions) represents a infinite set of modes; it has
a branch cut along the real axis which represents the change
in the number of states (the Kac number). So long as there is
a cutoff at large wave vector, this plays no role; however, the
contour integral must be performed before the limit Q = ∞ is
taken.

Having dismissed the cutoff on wave vector, Candelas
introduces an additional cutoff on the order of the Bessel
function ν. This introduces an extra ν dependence in the terms
of the sum Eq. (28), which spoils the feature that it is a sum
of exact differentials with respect to ν (regarded as a real
variable), so that the integral term in the Euler-Maclaurin
rule can no longer be evaluated. This may be a relevant
observation, because it challenges our assumption in Eq. (1)
that the cutoff depends only on the wave vector. If the cutoff
function is taken to represent the transition from decoupling of
interior and exterior at long wavelengths (F → q/2 at small
frequency) to transparency at short wavelengths (F → 0 at
large frequency), there should indeed be a separate dependence
on ν, since this represents the angle of incidence of the wave.
However, transmission through the boundary should happen
more readily at normal incidence (small ν), whereas the cutoff
Candelas imposes has the opposite effect. Our conclusion is
that there is no cutoff-dependent term for the problem that
we consider [Eq. (1)], but leave slightly open the possibility
that there could be one for a real metal. Again assuming
Q = 108 m−1, the energy that Candelas proposes is of order
Kh̄cQ � 10−18J, which will be comparable to the surface
energies of condensed-matter origin only for objects smaller
than a nanometer.

The DOS is given by

�G(EM)(q) = δ(q)

4
− 3δ′(q)

32a
+ · · · . (32)

Expressions (30) and (32) do not contain a term proportional
to the area of the shell, which is a sign of zero coefficient of
surface tension in the Casimir problem. The only geometric
contribution present is the Kac term with K(EM) = 1/4. In
contrast to its scalar counterpart K(D)

d=3 = −1/24 [see Eqs. (14)
and (15)] the electromagnetic Kac number is positive which
means that a conductive boundary increases the number of
states. Our result for the Kac number agrees with the Balian-
Duplantier prediction (21).

The Casimir energy is the mode sum for the case F (q) =
q/2. Its value 3/64a is determined by the derivative term
of (30). The 3/64a universal answer agrees with the evaluation
given by Nesterenko and Pirozhenko [15], who used the ζ -
function regularization procedure. Even though this represents
the bulk of the Casimir energy for a conductive spherical shell
[40], there are 1/a corrections to this result due to higher-order
terms in the asymptotic expression (26). These corrections do
not require a cutoff and have been calculated [40].

3. Electromagnetic spectral problem in the ζ -function
regularization method

By choosing F = q−s the electromagnetic mode sum (28)
becomes the electromagnetic spectral ζ function,

Z (EM)(s,a) = sas

32
(s + 2)(s + 4)

× [(2s+1 − 1)ζ (s + 1) − 2s+1] + · · · , (33)

which accumulates all previously found results. First, by com-
paring Eq. (33) with its scalar counterpart (19) we observe that
while the latter has a pole at s = 2 warning us of the possibility
of the presence of the cutoff-dependent contribution into the
mode sum proportional to the sphere area, the electromagnetic
spectral function (33) is everywhere analytic. The consequence
is that Eq. (33) naively evaluated at physically interesting s

does not overlook cutoff-dependent contributions. Indeed, all
previously found results are reproduced:

(i) for s = −1 (ordinary Casimir effect) we find
Z (EM)(−1,a) = 3/32a, the amplitude of the F ′(0) term in
Eq. (30) as expected;

(ii) for s = −2 (nonrelativistic Casimir effect) we obtain
Z (EM)(−2,a) = 0 consistent with the absence of the second
derivative F ′′(0) term in Eq. (30);

(iii) for s = 0 (the Weyl problem) we arrive at
Z (EM)(0,a) = 1/4 which is again the right answer for the
Kac number, the amplitude of the F (0) term in Eq. (30).

Like its scalar counterpart (19), the electromagnetic spectral
function (33) is more informative than the Euler-Maclaurin
based mode sum (30): if the function F (q) is singular at
q = 0, the assumptions of the Euler-Maclaurin expansion are
not satisfied, and thus (30) is invalid. In such cases Eq. (33)
continues to be applicable.

IV. SUMMARY

We have shown how to calculate the generic mode sum
for three cases: a scalar field in one dimension perturbed
by a Dirichlet boundary; a scalar field in three dimensions,
perturbed by the introduction of a spherical shell; and
the electromagnetic field in three dimensions, perturbed
by the introduction of a conducting shell. We have shown that
these will in general contain contributions of geometric origin
(the Weyl terms) which require a cutoff and have physical
meaning. We have shown how to extract the Kac number and
the Casimir term when it exists.
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