
PHYSICAL REVIEW B 88, 165428 (2013)

Fermion space charge in narrow band-gap semiconductors, Weyl semimetals,
and around highly charged nuclei
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The field of charged impurities in narrow band-gap semiconductors and Weyl semimetals can create electron-
hole pairs when the total charge Ze of the impurity exceeds a value Zce. The particles of one charge escape to
infinity, leaving a screening space charge. The result is that the observable dimensionless impurity charge Q∞ is
less than Z but greater than Zc. There is a corresponding effect for nuclei with Z > Zc ≈ 170, however, in the
condensed matter setting we find Zc � 10. Thomas-Fermi theory indicates that Q∞ = 0 for the Weyl semimetal,
but we argue that this is a defect of the theory. For the case of a highly-charged recombination center in a
narrow band-gap semiconductor (or of a supercharged nucleus), the observable charge takes on a nearly universal
value. In Weyl semimetals, the observable charge takes on the universal value Q∞ = Zc set by the reciprocal of
material’s fine structure constant.
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I. INTRODUCTION

The experimental success of quantum electrodynamics
(QED) lies in the domain of small fields where observations
impressively match the theoretical calculations based on
perturbation theory in the fine structure constant α = e2/h̄c.
In calculations involving bound states of a nucleus of charge
Ze, the fine structure α constant additionally appears in the
combination Zα. Even though α is small, Zα may not be,
so that perturbative analysis can fail when Zα � 1. One of
the most profound physical effects predicted to take place
in this regime is the instability of the ground state (the
vacuum) against creation of electron-positron pairs, resulting
in a screening space charge of electrons with positrons leaving
physical picture.1 Experimental study of this effect has not
been possible, as stable nuclei with Z � 1/α ≈ 137 have not
been created, and attempts to look for positron production in
a temporarily created overcritical system of slowly colliding
uranium nuclei have not been successful.1

The goal of this paper is to demonstrate that in the
condensed matter setting the corresponding problems are the
impurity states in narrow band-gap semiconductors (NBGS)2

and Weyl semimetals (WS).3 The advantage of these systems
is that the charges and fields required to see the ground
state instability are modest and readily achievable. Some
of the effects may have already been seen2 without fully
appreciating what they represent. The outline of this paper
is as follows. In Sec. II, the phenomenon of critical charge is
first explained heuristically (IIA) followed by more precise
semiclassical argument (IIB) that relates the effect to that
of quantum-mechanical fall to the center.4 Then the critical
charge problem for the Coulomb potential modified at small
distances is analyzed via dimensional analysis (IIC), which
in Sec. III is employed to demonstrate the feasibility of
observation of its condensed matter analog, instability with
respect to creation of electron-hole pairs in semiconductors.

In Sec. IV, Thomas-Fermi (TF) theory of screening by
space charge is derived and its deficiencies and a modification
are discussed. One of the byproducts of the analysis is
the conclusion that the observable charge of an arbitrary

overcritical source in the WS case is always given by the
reciprocal of the inverse fine structure constant for the material.

In Secs. V and VI, the TF theory is solved in two steps—
uniformly charged half-space → spherically symmetric charge
distribution—so that the existence of several physically differ-
ent regimes of screening can be appreciated, and to establish
a relationship with previous analysis.5,6 The TF analysis leads
to the conclusion that there is total screening in the WS
case, through an argument that is parallel to Landau’s “zero
charge effect” in QED.7 This would have readily observable
consequences. However, we will argue in Sec. VII that this
claim of complete screening is not right, so that there after all
can be an observable charge.

II. CRITICAL CHARGE IN QUANTUM
ELECTRODYNAMICS

The Dirac equation for an electron in vacuum in the field of
a point charge Ze (the Dirac-Kepler problem) becomes invalid
for Z > 1/α ≈ 137.7

A. Heuristic argument

This feature can be heuristically understood by starting with
the classical expression for the energy of an electron of mass
me and momentum p in the field of charge Ze,

ε = c

√
p2 + m2

ec
2 − Ze2

r
, (1)

and trying to estimate the ground-state energy. Since the
electron position cannot be determined to better than h̄ divided
by the uncertainty of momentum, p and r � h̄/p entering
Eq. (1) may be regarded as the typical momentum and size of
the quantum state, respectively. Then the state energy can be
estimated as

ε(p) � c
(√

p2 + m2
ec

2 − zp
)
, z = Zα, (2)

where z measures the nuclear charge in units of the reciprocal
of the fine structure constant 1/α; both these “natural” units
(lower case letters) and the usual units for charge (upper case

165428-11098-0121/2013/88(16)/165428(13) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.165428


KOLOMEISKY, STRALEY, AND ZAIDI PHYSICAL REVIEW B 88, 165428 (2013)

letters) will be used throughout this paper. Minimizing with
respect to the free parameter p, we find

p0 � mecz√
1 − z2

, r0 � h̄

p0
� λ

√
1 − z2

z
, λ = h̄

mec
= re

α
,

(3)

where λ is the electron Compton wavelength that sets the scale
for the uncertainty of measurement of the electron position
and re = e2/mec

2 is the classical electron radius. The lowest
(ground-state) energy is then

ε0 = mec
2
√

1 − z2. (4)

While reproducing the well-known ground-state properties of
a hydrogenlike atom in the nonrelativistic z � 1 limit (3), as
well as (coincidentally) matching the exact expression for the
ground-state energy (4) based on the analysis of the Dirac
equation,7 these arguments also predict that the minimum
of (2) only exists for z < 1 (Z < 137). As z → 1 − 0, the
ground state becomes sharply localized (r0 → 0), the typical
electron momentum diverges (p0 → ∞), and the ground-
state energy vanishes (ε0 → 0). The conclusions (3) and (4)
become meaningless for z > zc = 1; specifically the ground-
state energy is predicted to become imaginary. The counter-
intuitive independence of zc of the electron mass me can be
explained via dimensional analysis:

The Dirac-Kepler problem is fully specified by the dimen-
sionless parameter z, and by the electron Compton wavelength
λ in (3). If there exists a critical value of the charge zc,
it can only be a function of the remaining independent
dimensionless parameters of the problem. However, having
only one length scale λ available makes it impossible to use it
in a dimensionless combination. Therefore zc cannot depend
on λ, and thus on the electron mass me; the only possible
outcome is zc � 1.

These observations imply that the z > 1 anomaly of the
Dirac-Kepler problem persists in the Weyl-Kepler problem
(me = 0), where the estimate (2) becomes

ε′(p) � pc(1 − z). (5)

As a result, a charged Weyl fermion placed in the field of a
point charge with z < 1 is always delocalized (p0 = 0, r0 =
∞, and ε0 = 0); the spectrum is not discrete (i.e., no bound
states). On the other hand, a sufficiently attractive charge z > 1
leads to a sharply localized ground state (p0 = ∞, r0 = 0, and
ε0 = −∞).

The z > 1 instability in the Dirac-Kepler problem can
be identified with a strong field limit of the Schwinger
effect:8 the creation of electron-positron pairs in vacuum in
a uniform electric field. The phenomenon is characterized by
the Schwinger typical electric field ES for which the work to
separate the constituents of the electron-positron pair over the
length scale of the Compton wavelength is equal to the rest
energy of the pair: eESλ � mec

2,

ES = m2
ec

3

eh̄
. (6)

For E � ES , the pairs are created by tunneling with the
vacuum being in a metastable state while for E � ES , the
vacuum is absolutely unstable with respect to pair creation.

For the Coulomb problem, the instability sets in when the
electric field of the nucleus a Compton wavelength away
from its center, Ze/λ2, reaches the order of magnitude of
the Schwinger field (6), thus predicting zc � 1. In view of its
mass independence, the prediction zc � 1 also applies to the
Weyl-Kepler problem.

B. Critical charge as a consequence of quantum-mechanical
“fall to the center”

The z > 1 anomaly of the Dirac equation is related to
the “fall to the center” effect of quantum mechanics.4 For
a classical electron of energy E and angular momentum M

moving in a central field U (r), the equation of conservation of
energy can be written as

p2
r = 2meE − 2meU (r) − M2

r2
> 0, (7)

where p2 = p2
r + M2/r2 is the square of total momentum and

pr is the radial component of the momentum. The particle can
reach the origin (fall to the center) if9

lim
r→0

(r2U (r)) < − M2

2me

. (8)

Specifically, for zero angular momentum M , the fall to the
center occurs for any attractive potential decreasing faster than
1/r2 as r → 0. In quantum mechanics, M2 has to be replaced
by the eigenvalues of the square of the angular momentum
operator, which will be chosen in the semiclassical Langer
form M2 → h̄2(l + 1/2)2 in Refs. 1 and 4 so that both the
effects of zero-point motion (l = 0) and angular momentum
(l 	= 0) are accounted for. The smallest value of M2 is h̄2/4,
which implies that the fall to the center can occur for 1/r2

potentials that are more attractive than the critical potential
satisfying4

Uc(r → 0) = − h̄2

8mer2
. (9)

When this condition is met there is no lower bound on the
spectrum.

For relativistic classical particle moving in a cen-
tral field, energy, and momentum are related by E =
c
√

p2
r + M2/r2 + m2

ec
2 + U (r). For bound states, we have

−mec
2 < E < mec

2, where beyond the lower limit the system
is unstable against pair creation. At the lower limit the range
of motion can be found by solving for the radial momentum
to obtain a form analogous to Eq. (7):

p2
r = 1

c2
(U 2(r) + 2mec

2U (r)) − M2

r2
> 0. (10)

If U (r) is diverging as r → 0, the U 2(r) term dominates, and
for attractive U (r) the origin can be reached if10

lim
r→0

(rU (r)) < −Mc. (11)

Classically, the fall to the center for the M = 0 state is
possible for a potential that at r → 0 is more attractive than
a 1/r potential. The quantum case is different: substituting
in (11) minimal M2 = h̄2/4, we infer that the fall to the
center is possible for 1/r potentials more attractive than the
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critical potential

Uc(r → 0) = −h̄c

2r
. (12)

Comparing with the Coulomb field U = −Ze2/r , we deduce
zc = Zcα = 1/2, which is the correct critical charge of the
Kepler problem for a spinless particle.1 It is half the value
found for the Dirac particle (the “missing” half is due to
the electron spin). The Dirac case cannot be fully understood
semiclassically but an insight can be gained by observing
that the relativistic case with E = −mec

2 is equivalent to a
nonrelativistic problem with the effective potential [compare
Eqs. (7) and (10)]

Ueff(r) = − U 2(r)

2mec2
− U (r) + M2

2mer2
(13)

and zero total energy. We now see that for the Kepler problem,
U (r) = −Ze2/r , the particle is repelled at large distances. The
same effective potential is obtained from the Klein-Gordon
equation transformed into the Schrödinger form.1

The Dirac equation can be also brought into a Schrödinger
form with an effective potential at E = −mec

2 resembling
Eq. (13) but also exhibiting extra terms attributed to the
electron spin.1 Their role can be (approximately) summarized
in a form similar to Eq. (13) with different amplitude of the
1/r2 term. Specifically for the Dirac-Kepler problem, we have1

Ueff(r) = Ze2

r
+ h̄2(1 − z2)

2mer2
. (14)

We see that the fall to the center occurs for z > 1 and then the
particle is confined to the central region of radius

Rcl = λ(z2 − 1)

2z
. (15)

As is the case of the fall to the center problem, proper
treatment of the instability of the Dirac equation requires
accounting for finite radius a of atomic nucleus that modifies
the 1/r attraction at short distances and removes the difficulty
for z > 1.1 For a nucleus with Z = Zc ≈ 170 (zc ≈ 1.24),
the ground-state energy reaches the boundary of the lower
continuum, ε0 = −mec

2.1 Past that point, the total energy of
the production of an electron-positron pair becomes negative
and the vacuum becomes unstable with respect to pair creation;
the positron repelled by the nucleus escapes to infinity while
the electron remains near the nucleus.1

C. Dimensional analysis

Many of the conclusions of previous analysis of the
critical charge problem that accounted for finite radius a of
atomic nucleus1,11 can be reproduced by a combination of
dimensional analysis and simple physical arguments. Indeed,
now we have a problem fully specified by independent
dimensionless combinations Z, α, and a/λ. Then, if there
exists a critical value Zc, it can only be a function of α

and a/λ. The electrostatic potential inside the nucleus has
the form ϕ(r) = (Ze/a)G(r/a), where G(1) = 1 and G(0) is
finite. Then the parameters Z and α appear together in the

z = Zα combination. Therefore

zc = f

(
a

λ

)
(16)

or

Zc = 1

α
f

(
a

λ

)
= h̄c

e2
f

(
meca

h̄

)
, (17)

where f (y) is a function that depends on the shape of the
charge distribution within the nucleus. The properties of f (y)
can be inferred from the following arguments. (i) For a = 0,
one has zc = 1, which implies the small argument behavior
f (y → 0) → 1. This additionally means that zc = 1 for me =
0 for arbitrary a (the Weyl-Kepler problem with cutoff).

(ii) In the classical h̄ → 0 limit, the Planck’s constant
must drop out of Eq. (17). This translates into the large
argument behavior f (y → ∞) � y with the consequence
zc � a/λ. This is indeed what is expected on physical grounds:
the vacuum becomes unstable when the electron potential
energy at the center of the nucleus −eϕ(0) + mec

2 reaches
the boundary of the lower energy continuum −mec

2. This
argument applied to the uniformly charged ball model of
the nucleus predicts f (y → ∞) → 4y/3. On the other hand,
f (y → ∞) → 2y for the constant potential ball model of the
nucleus.

For ordinary heavy nuclei the nuclear size a depends on Z

according to the Fermi formula

a = 0.61reZ
1/3 = 0.61λα2/3z1/3. (18)

The critical charge zc is found by simultaneous solution of
Eqs. (16) and (18) for z = zc:

zc = f
(
0.61α2/3z1/3

c

)
. (19)

The electron Compton wavelength is known to be much
larger than the nuclear size which means the argument of
the function f in Eq. (19) is much smaller than unity. In
this limit, the distinction between different models of nuclear
charge distribution disappears thus explaining the nearly
model-independent value of zc close to 1.

To add credibility to dimensional analysis we now show
that the latter easily solves the problem of instability of the
muon vacuum. Indeed, the muon Compton wavelength has the
same order of magnitude as the nuclear size since the muon
is more than 200 times heavier than the electron. The solution
to the problem is then described by Eq. (17) with the electron
mass me replaced by the muon mass mμ. We are now in the
large argument limit, f (y → ∞) � y, which determines the
critical Z for the muon to be

Z(μ)
c = z

(μ)
c

α
�

(
mμ

me

)3/2

� 3000. (20)

These conclusions agree with existing analysis of the
problem.1,11 In fact, we observe that approximating the true
f (y) dependence for all y by its y 
 1 limit11

f (y) = 4
3y + 1.1547, y 
 1 (21)

suffices to quickly estimate the critical charge in the practically
relevant case of the uniform density model of the nucleus.
In the y � 1 limit, where this approximation is expected to
work poorly, the combination of Eqs. (19) and (21) predicts
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Zc = 163, which is close to the accepted value of 170.
Inspection of previous results1,11 shows that, except for a
narrow vicinity of y = 0, the function f (y) is basically a
straight line of the right slope with a larger-than-unity offset.
The significance of the linear approximation (21) is that
it allows us to reliably estimate the critical charge in the
condensed matter setting.

III. CRITICAL CHARGE IN CONDENSED
MATTER SETTING

QED’s predictions of screening by space charge can be
tested in performable experiments involving condensed matter
systems, both presently available and those that will become
available in the near future. Our primary example is that of
NBGS whose physics is known to mimic QED.1 Excitation
of an electron-hole pair is analogous to the creation of an
electron-positron pair in QED, with the band gap representing
the combined rest energy of the particles. Creation of the
electron-hole pairs in the presence of a uniform electric field
takes place via Zener tunneling,12 which is analogous to the
Schwinger effect.8 Our contention is that moderately charged
impurity regions in semiconductors can trigger a space charge
around them that parallels the effects that would occur in QED
for unrealistically large Z � 170.

The idea that the Z > 137 anomaly of the original
Dirac-Kepler problem may have observable condensed matter
implications is due to Keldysh.2 In his study of the impurity
states in semiconductors Keldysh noted that the effective
mass approximation,13 while successful in describing shallow
impurity states, fails to explain deep states whose binding
energy is comparable with the band gap. Such states are
formed near multicharged impurity centers, vacancies, etc.,
and they cannot be associated with either conduction or
valence bands. The experiment presented another puzzle: some
highly charged impurities acted as very efficient recombination
centers that managed to trap both electrons and holes but an
explanation why that was the case was lacking. Keldysh argued
that experimental findings can be explained in a two-band
approximation (well obeyed in NBGS of the InSb type) where
the low-energy electron (hole) dispersion law is relativistic,2,14

ε(p) = ±
√

(�/2)2 + v2p2. (22)

Here, the upper and lower signs correspond to the conduction
and valence bands, respectively, � ≡ 2mv2 is the energy band
gap that parallels twice the rest energy of a particle of mass m,
and v is the velocity of a high-momentum particle analogous
to the speed of light c. Compared to their vacuum electron-
positron counterparts, electrons and holes in NBGS have two
orders of magnitude smaller effective mass (m � 0.01me) and
limiting velocity v nearly three orders of magnitude smaller
than the speed of light (v ≈ 4.3 × 10−3c). As a result their
band gap � � 0.1 eV is seven orders of magnitude smaller
than the rest energy of the electron-positron pair.15 Due to
these parameter values the analog of large field QED effects
are readily realizable in NBGS.

With this in mind, the determination of the impurity states
reduces to solving the Dirac equation for a particle of mass m

in the field of a charge Ze screened by the dielectric constant
ε of the semiconductor. In view of the peculiarity of the

Dirac-Kepler problem (now α = e2/h̄vε), Keldysh argued that
for z = Zα < 1 the impurity states are given by the known
solution to the Dirac equation7 while the z > 1 case with
“collapsed” ground state describes a recombination center.

An expression for the NBGS critical charge can be written
in a form that parallels Eq. (16):

zc = f

(
a

�

)
, � = h̄

mv
= 2h̄v

�
= Re

α
, (23)

where now a is the radius of the impurity region, � is
the semiconductor analog of the electron Compton wave-
length and Re = 2e2/ε� is the semiconductor counterpart
of the classical electron radius (defined as band electron’s
delocalization size at which its potential self-energy e2/εRe

matches its rest energy mv2 = �/2. We note that since both
Re � 1 nm and � � 10 nm significantly exceed the lattice
spacing, macroscopic theory of impurity states ignoring the
lattice structure of the material suffices.

The density of nuclear matter is known to have the order of
magnitude set by the classical electron radius re [see Eq. (18)].
It will be made clear shortly, that the large field effects in
NBGS become prominent at impurity charge densities set
by the NBGS electron radius Re. Therefore the relationship
between the radius a and the charge Z of a uniformly charged
region will be chosen as

a = 1.3ReZ
1/3 = 1.3�α2/3z1/3 (24)

that parallels its nuclear physics counterpart (18); the numeri-
cal factor corresponds to the charge density next = 1020cm−3 to
be justified below. The NBGS critical charge can be determined
by solving the equation

zc = f
(
1.3α2/3z1/3

c

)
, (25)

this is nearly identical to its QED counterpart (19). Because the
value of the limiting velocity v is known, the semiconductor
equivalent of the fine structure constant is α = e2/εh̄v ≈
1.7/ε = 0.17, an order of magnitude larger than its QED
counterpart (we employed ε = 1016). With this value of α

and choosing the function f (y) in the simple form (21), the
solution to Eq. (25) is zc ≈ 1.7, which implies Zc ≈ 10. The
corresponding critical cluster size is ac ≈ 3 nm according to
Eq. (24). Surely, Z � 10 impurity clusters with sizes in excess
of several nanometers are more common objects than Z � 170
nuclei.

In addition to making it possible to study the regime of large
effective fine structure constant, condensed matter systems
also offer possibilities that cannot be realized in QED. Indeed,
over forty years ago Abrikosov and Beneslavskiı̆3 predicted
the existence of WS having points in the Brillouin zone where
the valence and conduction bands meet with a dispersion law
that is linear in the momentum. This is the � = 0 case of
Eq. (22). The low-energy excitations in WS (realizing massless
versions of QED) are described by the Weyl equation. We
already know that the critical charge for the Weyl-Kepler
problem is zc = 1. Equation (5) additionally implies lack of the
discrete spectrum for z < 1; for z > 1, a space charge of Weyl
fermions is present in the ground state. Such substances are
likely to be realized in doped silver chalcogenides Ag2+δSe and
Ag2+δTe,17 pyrochlore iridates A2Ir2O7 (where A is yttrium
or a lanthanide),18 and in topological insulator multilayer
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structures.19 The zero energy gap of WS implies that in a
uniform electric field the creation of a space charge of Weyl
fermions is spontaneous. The dielectric constant of WS is of
order 10 with e2/h̄v � 1,3 thus leading, like in the NBGS case,
to Zc � 10 independent of the size of the impurity region.

NBGS and WS are condensed matter systems where
analogs of the atomic collapse of QED can be experimen-
tally detected. Related phenomena can be also observed in
graphene. Indeed, graphene possesses the linear dispersion
law analogous to that of WS and microscopic parameters
similar to NBGS which leads to a small value for the
critical charge for promotion of electrons from the valence
band to the conduction band. Such a problem has been
considered elsewhere20 and experimental signatures of the
“atomic collapse” in graphene were recently reported.21 The
graphene problem is mathematically different from what we
discuss, because graphene is a two-dimensional semimetal
embedded in a three-dimensional space.

Below, we will determine the ground-state properties
of NBGS and WS in the presence of a finite-size positive
Coulomb impurity (a negative charge leads to the same dis-
cussion due to particle-hole symmetry). The arguments given
above imply that at modest Z electrons are promoted from the
valence band to form a space charge around the impurity while
the holes leave the physical picture; the properties of the space
charge vary with Z and α and are determined by the interplay of
attraction to the impurity (promoting the creation of electron-
hole pairs), and electron-electron repulsion combined with
the Pauli principle (limiting the creation of the space charge).
The QED analysis of the physical properties of the space
charge was carried out in two limits: (i) Z close to Zc, where
there are very few electrons promoted to the conduction band
for which the single-particle picture is a good starting point;1

and (ii) Z 
 Zc, where the number of screening electrons
is large and the electron-electron interactions cannot be
ignored.5,6

Below we demonstrate that the physics in the Z 
 Zc

limit exhibits a large degree of universality. Although we
are mostly concerned with the NBGS setting, our findings
are equally applicable in QED as both problems share the
same mathematics; a solution to the WS problem benefits the
understanding of the NBGS/QED case.

To help the readers orient themselves between three phys-
ically different manifestations of the problem and to provide
them with a condensed matter-QED translation dictionary, in
Table I, we summarized pertinent properties of electrons in
vacua of QED, NBGS, and WS. The entries not yet specified
are (i) the fermion degeneracy factor g, which is 2 in QED,
while in NBGS it is twice the number of Dirac valleys (22)
within the first Brillouin zone; an isotropic valley-independent
limiting velocity v is assumed for simplicity. In the WS
case, g counts the number of Weyl points within the first
Brillouin zone: g = 24 in pyrochlore iridates18 and g = 2 in a
topological insulator multilayer.19 (ii) The coupling constant
γ plays a role analogous to that of the fine structure constant
α in polarization effects, as will be made clear below. (iii) The
Zener field EZ is the semiconductor analog of the Schwinger
field (6) defined as

EZ = �2

eh̄v
. (26)

TABLE I. Summary of properties of electrons in vacua of
quantum electrodynamics (QED), narrow band-gap semiconductors
(NBGS), and Weyl semimetals (WS).

Media QED NBGS WS

Electrons free band Dirac band Weyl
Mass me m � 10−2me 0
Degeneracy g 2 � 2 � 2
Dielectric ε = 1 ε ≈ 10 ε � 10

constant
Limiting speed c v ≈ 4 × 10−3c v � 10−2c

Band gap or 2mec
2 10−7 × 2mec

2 0
rest energy

Fine structure e2

h̄c
≈ 1

137
e2

h̄vε
≈ 1

6
e2

h̄vε
� 0.1

constant α

Coupling 4α3

3π
≈ 10−7 2gα3

3π
� 10−3 2gα3

3π
� 10−3

constant γ

Classical radius re � 10−6 nm Re � 1 nm ∞
of electron

Compton λ � 10−4 nm � � 10 nm ∞
wavelength

Schwinger or ES � 1016 V
cm EZ � 105 V

cm 0
Zener field

Comparing the values of the fields ES and EZ explains why
NBGS are so well suited to study strong field QED effects;
the situation is even more favorable in WS where due to the
zero band gap, an arbitrarily weak field is “strong” as far as
the space charge phenomena are concerned.

IV. THOMAS-FERMI THEORY

Since for Z 
 Zc a large number of electrons are in the
conduction band, the properties of the system consisting of
the impurity and its interacting cloud of electrons can be
understood semiclassically with the help of the TF theory.5,6

The main object of the latter is a physical electrostatic potential
ϕ(r) felt by an electron that is due to both the electrostatic
potential of the impurity ϕext(r) and that of the space charge
characterized by the number density n(r):

ϕ(r) = ϕext(r) − e

ε

∫
n(r′)dV ′

|r − r′| . (27)

The external potential ϕext(r) is a pseudopotential that repre-
sents the perturbation of the system caused by the impurity;
even though ϕext is not entirely of electrostatic origin, we
will define �ϕext = −4πenext/ε. We assume that the impurity
charge density enext(r) is spherically symmetric and localized
within a mesoscopic region of size a so that for r � a the
potential ϕext(r) reduces to a purely Coulomb form ϕext(r) =
Ze/εr of a net charge Ze. There are several reasons why
the impurity region has to be mesoscopic in size. First of all,
in practice charged atomic scale defects cannot have Z � 10.
Second, a large charge localized within a small region implies a
large electrostatic potential. However, all our analysis is based
on approximating the exact dispersion law by its low-energy
limit (22). For that to remain valid, the order of magnitude of
the potential within the impurity region should not exceed a
volt. Like in graphene, this corresponds to the electron volt
energy scale, which is significantly smaller than the width of
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the conduction band. Finally, the conditions of semiclassical
description inherent within the TF theory must be met. All
these constraints along with the requirement Z 
 Zc � 10
can be satisfied in a � 10 nm impurity clusters. Promotion of
electrons to the conduction band also takes place in smaller
(down to 3 nm) regions but the number of these electrons may
not be large enough for the predictions of the TF theory to be
quantitatively reliable.

Given ϕ(r), one can deduce that the electron number density
n(r) is different from zero only in the region of space where the
electron potential energy −eϕ(r) + �/2 drops below −�/2,
thus defining the edge of the space charge region as

eϕ(r) > �,n(r) > 0. (28)

The radius of the space charge region Rsc � a is given by the
equalities eϕ(Rsc) = �, n(Rsc) = 0; outside the region, we
have n = 0 and

ϕ = Q∞e

εr
, r > Rsc = 1

2
Q∞

2e2

ε�
≡ 1

2
Q∞Re, (29)

where Q∞ < Z is the observable charge as seen at large
distances from the source center. Continuity of the potential ϕ

across the shell boundary relates Rsc and Q∞, while the NBGS
electron radius Re sets the length scale as indicated in the last
two steps in (29) meaning that we can speak of the shell size or
the observable charge interchangeably. We note that in the WS
case, Re = ∞, Eq. (29) predicts Rsc = ∞, i.e., the electron
shell extends all the way to infinity. In natural units of charge,
the relationship between the observable charge q∞ = Q∞α

and the radius of the electron shell is given by

q∞ = 2Rsc

�
. (30)

From the thermodynamical standpoint, creation of electron
(e)-hole (h) pairs by the field of a Coulomb impurity
accompanied by escape of a hole to infinity may be viewed
as a “chemical reaction” e + h � 0 (the ground state of
the semiconductor is the “vacuum”);13 the condition of
equilibrium for this reaction has the form

μe + μh = 0, μe =
√

(�/2)2 + v2p2
F − eϕ, μh = �/2,

(31)

where μe and μh are the chemical potentials of the electrons
and holes, respectively, and

pF (r) = h̄

(
6π2n(r)

g

)1/3

(32)

is the Fermi momentum, which we assume is a slowly varying
function of position r.

The condition of equilibrium (31) together with Eq. (32)
implies a relationship between the physical potential and the
number density of the space charge:5,6

n(r) = γ

4π

{
εϕ(r)

e

ε

e2
[eϕ(r) − �]

}3/2

, (33)

where

γ = 2gα3

3π
(34)

is the coupling constant characterizing the relative strength of
electron-electron interactions and zero-point motion. The four
orders of magnitude disparity between its condensed matter
and QED values (see Table I) is yet another indication that the
space charge phenomenon is more relevant to semiconductors
than to QED.

Since the electron chemical potential in (31) is set at the
boundary of the lower continuum, in the NBGS/QED cases
the screening of the external charge is incomplete; only in
the WS (� = 0) case we have complete screening. The latter
statement can be rigorously proven by setting � = 0 in (31)
and combining the outcome with Eqs. (27) and (32):(

4πn(r)

γ

)1/3

− εϕext(r)

e
+

∫
n(r′)dV ′

|r − r′| = 0. (35)

Taking in Eq. (35) the r → ∞ limit gives a relationship∫
n(r)dV = Z

[
1 − lim

r→∞

(
4πn(r)r3

γZ3

) 1
3

]
, (36)

whose consequences are that the electron number density n(r)
must decay faster than r−3 at r large and that∫

n(r)dV = Z, (37)

i.e., according to TF theory, a WS succeeds in giving complete
screening of the impurity charge.

Applying the Laplacian operator to both sides of Eq. (27)
and using (33), we find the relativistic TF equation

∇2

(
εϕ

e

)
= −4πnext + γ

[
εϕ

e

ε

e2
(eϕ − �)

]3/2

, (38)

which was investigated in QED for the case of localized source
term.5,6

Applicability of the zero-temperature TF theory to experi-
ments to be conducted at finite temperature requires further jus-
tification. Since the 0.1 eV energy gap of NBGS significantly
exceeds the room-temperature scale of 1/40 eV, the zero
temperature theory adequately describes room-temperature
experiments. However, WS have a zero-energy gap and in
equilibrium the conduction and valence bands are populated
with electrons and holes, respectively. This effect can be also
neglected as we are working at a potential close to 1 V,
significantly exceeding the room-temperature energy scale.

A. Range of applicability of the Thomas-Fermi theory
and proposal for its improvement

In order to establish the range of applicability of the TF
theory, we note that the observable charge q∞ is the critical
charge of the single-particle problem for a charged region of
scale Rsc, which is due to both the external charge and that
of the space charge. Then replacing a → Rsc in Eq. (23), we
arrive at the definition

q∞ = f

(
Rsc

�

)
, (39)

which is consistent with the TF result (30) only in the classical
limit Rsc 
 � [recall that f (y → ∞) � y, Sec. II]. However,
WS are characterized by � = ∞ and so the semiclassical
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condition can never be met. The consequence is that the
prediction of complete screening in the WS case, q∞ =
Q∞α = 0, an exact consequence of the TF theory, is an
artifact. In reality, the WS will screen an overcritical impurity
charge by space charge only until the point at which the
single-particle description is restored. This sets a limit on the
applicability of the TF theory to the WS case at large distances
from the source center and implies that the space charge region
has a finite radius to be estimated below.

Since the Weyl-Kepler problem with z < 1 does not have
a discrete spectrum, Coulomb impurities in WS can never be
fully neutralized. Their observable charge q∞ is either 1 (and
then there is a space charge of Weyl electrons) or z < 1 (when
there is no space charge).

More generally, Eq. (39) implies that in the NBGS/QED
setting the screening is never so great (in the case z > zc)
that the observable charge q∞ is less than unity. In the point
charge limit a → 0, the space charge region must also shrink
to a point (Rsc → 0), and then Eq. (39) predicts q∞ = 1, i.e.,
disallowance for a point charge to have observable charge
exceeding unity.5

Since the Dirac-Kepler problem always has bound states,
Coulomb impurities in NBGS can be neutral or ionized with
the outer electron shells partially or fully filled with (Z > Zc)
or without (Z < Zc) the space charge being present. Here, we
only consider the problem of an overcritical Z > Zc ion with
all outer shells empty.

To summarize, the condition of applicability of the TF the-
ory can be stated in two equivalent forms, Rsc 
 � or q∞ 
 1.
Ultimately, the TF treatment of the space charge in the presence
of the supercritical source z 
 zc is applicable because the fine
structure constant is significantly smaller than unity.

In order to see what physics is missing from the TF theory,
we observe that the relationship between the observable charge
and the radius of the electron shell (30) resembles the z 
 1
limit of the semiclassical expression (15) for the localization
scale of an electron (replacing � → λ and q∞ → z). The latter
is sensitive to the fall to the center occurring at z = 1 while the
TF result (30) is not. The same can be seen more generally by
solving the main equation of the TF theory (31) relative to p2

F :

p2
F = 1

v2
[(eϕ)2 − eϕ�]. (40)

With the identifications −eϕ → U , v → c, � → 2mec
2, this

is the energy relationship (10), but the term involving the
angular momentum is missing. We propose including this into
the right-hand side of Eq. (38):

1

r2

d

dr

(
r2 d

dr

εϕ

e

)
= −4πnext(r)

+ γ

[
εϕ

e

ε

e2
(eϕ − �) − 1

α2r2

]3/2

.

(41)

At the boundary of the space charge region where the potential
is given by Eq. (29), the expression in the second line vanishes
leading to a relationship between observable charge q∞ and
the radius of the space charge region Rsc,

q∞ = Rsc

�
+

√(
Rsc

�

)2

+ 1, (42)

generalizing the TF result (30) and correctly capturing the
limiting cases of Rsc 
 � and Rsc � �. This is equivalent to
choosing the function f in (39) in the f (y) = y +

√
y2 + 1

form. Assessing the status of our modification of the TF the-
ory (41) requires a separate investigation which we postpone
until the future. At the very least, what is proposed qualifies as
an interpolation. Until we learn more about the deficiencies of
the TF theory, we focus on its standard version accumulated
in Eqs. (33) and (38). Some other desirable features of the
modified TF equation (41) are mentioned in Sec. VII.

V. STRONG SCREENING REGIME: γ Z2 � 1

The phenomenon of screening is a manifestation of the
electron-electron interactions quantified by the coupling con-
stant γ . Its smallness (see Table I) does not imply that the
screening response is necessarily weak. Previous analysis6

established that the strength of screening is determined by
the dimensionless combination γZ2, which for Z 
 Zc can
take on an arbitrary value. Below we additionally show that in
the NBGS/QED cases the regime of strong screening further
subdivides into that of superstrong screening Z 
 γ −3/2 (that
is hardly accessible in practice) and the regime of moderately
strong screening γ −1/2 � Z � γ −3/2, which is treated in
detail.

A. Uniformly charged half-space

Since the source region is mesoscopic in size, we find it
useful to start with the problem of screening of a uniformly
charged half-space (“half-infinite” nuclear matter in the QED
setting) by space charge. This requires solution of the one-
dimensional version of Eq. (38):

d2

dx2

(
εϕ

e

)
= −4πnext(x) + γ

[
εϕ

e

ε

e2
(eϕ − �)

]3/2

, (43)

where next(x < 0) = 3Z/4πa3, while next(x > 0) = 0. The
solution to Eq. (43) within the source region far away from
the boundary ϕ(x → −∞) ≡ ϕ−∞ corresponds to the state of
local neutrality n = next:5

εϕ−∞
e

Re = 1 +
√

1 +
(

4πnextR3
e

γ

)2/3

. (44)

The quantity eϕ−∞ is the work function, i.e., the energy needed
to remove the electron from the source region. At this point,
we observe that in the QED (Re → re, nextr

3
e � 1, γ � 1) and

WS (Re = ∞) versions of the problem, Eq. (44) simplifies to

ϕ−∞ = e

ε

(
4πnext

γ

)1/3

. (45)

In the condensed matter setting, our theory is applicable pro-
vided the potential ϕ−∞ does not exceed a volt. Then for γ �
10−3 and ε � 10 the maximal external charge density within
the impurity region can be estimated as next � 1020cm−3, two
orders of magnitude smaller than the free-electron density in
normal metals. This corresponds to nextR

3
e ≈ 0.1 and justifies

Eq. (24). With these parameter values the approximation (45)
also holds in NBGS. Given the charge concentration of
next = 1020cm−3, a 10-nm impurity region would contain a
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bare charge of about 400 which is significantly larger than
Zc ≈ 10. Yet larger values of Z 
 Zc can be obtained by
choosing a � 10 nm: a 20-nm region will host an external
charge of about 3000.

The source boundary represents a perturbation to the
constant next; assuming the effect is weak we substitute
ϕ = ϕ−∞(1 − φ), 0 � φ � 1, into Eq. (38) and linearize about
ϕ = ϕ−∞:

d2φ

dx2
− κ2φ = 0, (46)

where the length scale

κ−1 = 3−1/2(4πnext)
−1/3γ −1/6 = e√

3γ ϕ−∞ε

= 3−5/6(γZ2)−1/6a � Reγ
−1/6 (47)

parallels the Debye length of the TF theory of screening in
a Fermi gas;16 κ−1 is the scale over which the potential ϕ

recovers to ϕ−∞ when disturbed by an inhomogeneity. The last
estimate in (47) is only applicable to the NBGS or QED (Re →
re) cases. In the condensed matter setting with γ � 10−3, the
TF screening length is of the order several nanometers. In
QED, κ−1 is an order of magnitude larger than the classical
electron radius.

Applicability of the concept of the screening length to a
finite size system is limited by the constraint κ−1 � a which
is a statement of strong screening γZ2 
 1.6 The crossover in
the screening response occurs at a charge

Zx � γ −1/2. (48)

In condensed matter applications, we find Zx � 30; both the
regimes of weak 10 � Z � 30 and strong Z � 30 screening
are experimentally accessible. In QED, we have Zx � 3000,
which is only of academic interest. Assuming the potential at
the impurity boundary is not significantly smaller than ϕ−∞,
the ϕ(x < 0) dependence can be inferred from the linearized
form (46), which gives ϕ−∞ − ϕ(x < 0) ∝ eκx : while local
neutrality holds far away from the boundary, it is violated in a
boundary layer whose size has the order of magnitude of the
TF screening length κ−1.

Outside the impurity region x > 0 the potential will
continue to decrease from its value at the boundary ϕ(x = 0)
until it reaches the edge of the space charge region defined
as eϕ(x = Lsc) = �. The length scale Lsc has a meaning of
the thickness of the layer of space charge outside the impurity
region.

We thus see that a layer of net positive charge of thickness
κ−1 localized next to the boundary is followed by a layer of
negative charge of thickness Lsc outside the source region.5,6

The net charge of this double layer is positive thus implying
that the electric field for x > Lsc is finite and uniform.

Even though Eq. (43) can be integrated in quadratures, an
approximate solution is more illuminating. Within the source
region the potential is approximated by the solution to Eq. (46)
finite at x = −∞:

εϕ

e
= εϕ−∞

e
(1 − φ) = κ√

3γ
(1 − Aeκx), (49)

where it is assumed (and later justified) that A � 1.

Outside the impurity region x > 0 the full nonlinear
equation (43) becomes

d2

dx2

(
εϕ

e

)
= γ

[
εϕ

e

ε

e2
(eϕ − �)

]3/2

. (50)

In the WS case or when eϕ 
 �, Eq. (50) simplifies to

d2

dx2

(
εϕ

e

)
= γ

(
εϕ

e

)3

. (51)

An analytic solution to the problem of screening of a
supercharged nucleus in the strong screening limit γZ2 
 1
that approximates the finite nucleus by half-infinite nuclear
matter and relies on Eqs. (46) and (51) was proposed by
Migdal, Voskresenskiı̆, and Popov (MVP).6

For x > 0, the solution to Eq. (51) satisfying the conditions
of zero electric field and zero potential at x = ∞ has the form

εϕ

e
=

√
2

γ

1

x + B
. (52)

Continuity of the potential and of the electric field at the source
boundary x = 0 determines the integration constants A and B

in Eqs. (49) and (52) to be

A ≈ 0.2374, B = βκ−1 � (γZ2)−1/6a, β ≈ 3.212.

(53)

The length scale B naturally has the order of magnitude of the
TF screening length κ−1.

The profile of the electron number density for x > 0 is
implied by Eqs. (33) and (52):

n(x) = 1

2π

√
2

γ

1

(x + B)3
. (54)

In the x 
 B � κ−1 limit, the MVP solution (52) and (54)
exhibits universality, i.e., it becomes independent of the
parameters of the source region.

B. Spherically-symmetric charge distribution

The MVP solution Eqs. (49)–(54) with x → r − a is partly
relevant to the problem of screening response of NBGS or WS
to the spherically symmetric charge distribution of radius a.
Specifically, Eq. (49) adequately solves the problem within
the impurity region in the strong-screening regime γZ2 
 1.
For example, the net charge within the source region can be
estimated as6

Q(r � a) � κ−1a2(Z/a3) � Z(γZ2)−1/6. (55)

This is significantly smaller than the bare charge Z thus
illustrating substantial screening of the source region.

On the other hand, the density profile Eq. (54) with
x → r − a integrates to an infinite charge in three dimensions.
Therefore outside a spherically symmetric charge distribution
Eqs. (52) and (54) are only applicable as long as approximating
the spherical surface by a plane is valid, i.e., for x = r −
a � a. In order to go beyond the limitation of the MVP
approximation outside the source region, we need to solve
the full three-dimensional equation (38).
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1. Weyl semimetal

Outside of the source in the WS (� = 0) case, one has
to look at the full nonlinear equation (38) whose radially
symmetric solution is sought in the form

εϕ(r)

e
= 1

r
χ

(
r

a

)
, (56)

where, via Gauss’s theorem, the function χ is related to the
charge Q(r) within a sphere of radius r as

Q(r) = −r2 ∂(εϕ/e)

∂r
= χ (�) − χ ′(�), � = ln

r

a
. (57)

Substituting (56) into (38) for r > a and � = 0, we obtain the
equation

χ ′′(�) − χ ′(�) = γχ3. (58)

For � = ln(r/a) � 1, we can neglect here the first-order
derivative term χ ′(�) compared to χ ′′(�); then Q(r) ≈ −χ ′(�).
The solution to (58) in this limit is the MVP result (52) in
disguise

χ1(�) =
√

2

γ

1

� + B/a
, 0 � � � 1. (59)

In the strong-screening limit γZ2 
 1, the parameter B/a �
(γZ2)−1/6 drops out of Eq. (59), and the solution to the full
Eq. (58) has the form χ (λ,�) = (2/γ )1/2y(�), where y(�) is a
parameter free universal function satisfying singular boundary
condition y(� → 0) → �−1. The latter behavior is no longer
an accurate representation of the true dependence y(�) past
� � 1. Therefore the solution (59) is only applicable up
to a crossover scale � = �∗ � 1, i.e., within several source
radii as was already observed earlier. Within this range, the
rescaled potential εϕ/e drops from a value of the order
γ −1/2(γZ2)1/6a−1 at the source boundary to γ −1/2a−1 at the
crossover scale �∗, and the charge within a sphere of radius
r = ae� drops from the value given by Eq. (55) at the source
boundary to Q∗ � −χ ′

1(1) � γ −1/2 at the crossover scale �∗.
For � = ln(r/a) 
 1, we can neglect in Eq. (58) the second-

order derivative term χ ′′(�) compared to χ ′(�); then q(�) =
Q(r)α ≈ χ (�)α and for arbitrary screening strength and in
natural units of charge, Eq. (58) acquires the form

dq

d�
= −2gα

3π
q3, (60)

which is mathematically identical to the Gell-Mann-Low
(renormalization-group) equation7 for the physical charge in
QED reflecting the effects of vacuum polarization. Equa-
tion (60) exhibits the Landau “zero charge” effect:7 for any
“initial” value of q the system “flows” to the zero charge fixed
point q = 0 as � → ∞ (r → ∞), i.e., the source charge has
been completely screened. Alternatively, for r fixed complete
screening is reached in the point source limit a → 0. Zero
observable charge is an exact property of the TF theory
discussed in Sec. IV.

In the strong-screening regime, the last equation is applica-
ble at � � �∗ � 1. As a result, the charge q(r) inside a sphere
of radius r > a∗ = ae�∗ � a will be given by

q2(r) = z∗2

1 + (4gαz∗2/3π ) ln(r/a∗)
→ 3π

4gα ln(r/a∗)
, (61)

where the integration constant z∗ = Q∗α is the charge within
a sphere of radius a∗. Since γQ∗2 � 1, the constant can be
estimated as z∗ � α−1/2 
 1 thus implying that the observable
charge will be accurately given by the last representation
in (61) at distances exceeding several impurity radii. Sub-
stituting Q = q/α = χ into Eqs. (56) and (33), we find
corresponding expressions for the potential,

ϕ(r) ≈ e

εr
√

2γ ln(r/a∗)
= e

2εr

√
3π

gα3 ln(r/a∗)
, (62)

and the electron density,

n(r) ≈ γ

4πr3

1

[2γ ln(r/a∗)]3/2
= 1

16πr3

√
3π

gα3
ln−3/2

(
r

a∗

)
,

(63)

both valid for r � a∗ � a. We note that due to the logarithmic
factor, the density profile is integrable. This feature, a reflection
of the three-dimensional character of the problem, is missing
from the MVP result (54).

The hallmark of Eqs. (61)–(63) is their near universality:
a weak logarithmic dependence on the source size a � a∗
with universal amplitudes. Since both a and a∗ appear within
arguments of the logarithm, in what follows for simplification
purposes the difference between them will be neglected. We
conclude that for γZ2 
 1 the solution to the screening prob-
lem within several impurity radii from the source boundary is
universal and given by the MVP results, Eqs. (52) and (54),
that turns nearly universal, Eqs. (61)–(63), at larger distances.

We argued previously (see Sec. IV A) that the complete
screening effect is an artifact—the observable charge of an
overcritical source region must be always equal to unity (1/α).
Substituting this value into Eq. (61) provides us with a length
scale

RW � ae3π/2gα, (64)

which is the radius of the space charge region: for r > RW

the electron density is negligible and the potential is that of
unit (1/α) charge. The TF results (61)–(63) are applicable at
distances r � RW . The exact magnitude of the exponential is
explained in Sec. VII.

In QED, the exponential factor in (64) is about 10140. Then
RW is the largest length scale of the problem and for all
practical purposes TF theory is exact in the Z 
 Zc regime.

In WS with g = 24 and α = 1/10, the exponential factor
in (64) is close to 7, which means that the whole spatial struc-
ture of the overcritical Weyl ion is experimentally accessible.
This system is particularly interesting because both the TF,
r � RW , and the non-TF, r 
 RW , regions can be probed. On
the other hand, choosing g = 2 gives the exponential factor of
the order 1010, which for a nanometer scale impurity region
corresponds to the Weyl ion of 10-m radius. In the latter case,
the TF theory provides practically exact description.

2. Narrow band-gap semiconductors and QED

We already learned that at a distance of a few source radii
the potential drops to a value of the order eγ −1/2/εa. This
corresponds to the energy scale eϕ � �(Zxx/Z)1/3, which
is much larger than the energy gap � if the charge Z is
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significantly smaller than the characteristic charge

Zxx � γ −3/2 � Z3
x. (65)

Then the analysis just given for WS will also be applicable in
the NBGS/QED case with the conclusion that within several
impurity radii the solution to the problem continues to be given
by the MVP results, Eqs. (49)–(54), with x → r − a.

The characteristic charge (65) separates the regime of
moderately strong screening γ −1/2 � Z � γ −3/2 to which
the results of this subsection apply, from that of superstrong
screening Z 
 γ −3/2. The characteristic charge Zxx signifi-
cantly exceeds the crossover charge Zx , Eq. (48), separating
the regimes of weak and strong screening response. In NBGS
with γ = 10−3, we find Zxx � 303, which even by condensed
matter standards is very large. In QED, we obtain Zxx �
30003. In view of unrealistically large value of Zxx , the analysis
of the regime of superstrong screening Z 
 Zxx � γ −3/2 is
not pursued here.

At distances exceeding several source radii, we need to look
at the equation

dq

d�
= −2gα

3π

(
q2 − 2qr

�

)3/2

, � = ln
r

a
, (66)

which generalizes Eq. (60). Now the charge decreases faster
with position than its WS counterpart; when the right-hand side
vanishes, i.e., the edge of the electron shell r = Rsc is reached,
the charge acquires its observable value q∞ [see Eq. (30)] and
stops changing thereafter. The form of the solution can be
approximately captured by the WS result (61) (that remains
relevant at distances r � Rsc); the value of q∞ at Rsc can be
estimated with logarithmic accuracy by equating eϕ to �. This
is equivalent to terminating the flow equation (60) at the scale

�sc = ln
Rsc

a

 1 (67)

and identifying q(�sc) = q∞. Then the observable charge q∞
will satisfy the equation

q2
∞ ≈ 3π

4gα ln(q∞�/a)
(68)

whose consequence is that for a fixed there exists a nearly
universal lower limit on the observable charge q∞. In the point
source limit a → 0, we find q∞ = 0, i.e., there is a complete
screening of the field of a point charge at an arbitrary distance
from it. For a realistic extended source, the approximate
solution for the charge is

q∞ = Q∞α ≈
√

3π

4gα ln(�/a(gα)1/2)
→

√
9π

4gα ln(Zxx/Z)
,

(69)

where in the last step, we specified to the practically important
case of a ∝ Z1/3. The size of the space charge region is then
given by Eq. (30). The electric field at the edge of the space
charge region can be estimated as

Esc = eq∞
εαR2

sc

� α1/2EZ. (70)

The fact that the field at the shell edge (70) is much smaller
than the Zener field demonstrates the sharpness of the edge.

The solution (69) is accurate provided ln(Zxx/Z)1/3 
 1.
For NBGS with Z � 400 (10-nm impurity region) and γ =
10−3, we find ln(Zxx/Z)1/3 ≈ 1.5. This is not really in the
regime where Eq. (69) applies, but suffices to estimate the
charge (ignoring the logarithmic factor) as Q∞ = q∞/α �
λ−1/2 ≈ 30, and the size of the space charge region Rsc �
30 nm. In QED, we find Q∞ � 3000.

As the bare charge Z continues to increase within the
γ −1/2 � Z � γ −3/2 range of moderately strong screening,
the observable charge (69) and size of the space charge region
Rsc remain nearly constant increasing very slowly with Z. The
size of the source region a ∝ Z1/3 grows faster with Z than
Rsc, at Z � Zxx the two meet, and the result (69) ceases to be
applicable.

To summarize, in NBGS and QED in the regime of
moderately strong screening Zx � Z � Zxx the expressions
for the observable charge (69) and radius of the space charge
region (30) are nearly universal. They are manifestations of the
nearly-universal “zero charge” behavior (61) in the WS case.
The physical mechanism by which the zero charge situation is
avoided is purely classical: when it is no longer energetically
favorable, the creation of further space charge terminates.

3. Numerical solution

To put our analysis of the regime of moderately strong
screening γ −1/2 � Z � γ −3/2 onto solid footing, we solved
the full Eq. (38) numerically. The results are shown in Fig. 1,
where we additionally displayed the charge Q(r) within a
sphere of radius r as an indicator of the strength of screening.

The very weak dependence of the observable charge Q∞ =
q∞/α and size Rsc of the space charge region on the bare charge
Z has its origin in the Z dependence of the size of the source
region (24). For a = const, our theory predicts Z-independent
limit on Q∞ and Rsc. Therefore in order to single out this effect,
we chose a = const. Specifically, we set Z0 = ε�a/e2 = 1
(other values of Z0 are equivalent to a rescaling Z → Z/Z0

FIG. 1. (Color online) Potential ϕ (27) and charge Q(r) within a
sphere of radius r (57) as functions of distance (double logarithmic
representation). The source region is r/a < 1. The gap value � is
indicated by the horizontal line; the electron cloud is limited to the
region where eϕ > �, which defines Rsc. The curves are drawn for
Z = 2,20,200,2000, γ = 0.001. For large Z, Rsc approaches a Z-
independent limit, indicating that Q(r) tends to an upper bound Q∞.
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and γ → γZ2
0). Several features of the numerical solution

illustrating our analysis deserve mentioning. (i) As expected
the screening effect of the space charge becomes noticeable for
γZ2 � 1. (ii) The crossing of the charge curves for Z = 200
and 2000 at r small is a direct illustration of screening: the TF
screening length κ−1 [see Eq. (47) for a = const] is smaller for
Z = 2000 than Z = 200, so that the screening at the central
region is more complete in the former case. (iii) The large drop
of the potential within a few radii of the impurity, clearly seen
in the Z = 200 and Z = 2000 curves, is an illustration of our
observation made in the analysis of the WS problem that within
this range the potential must drop by a large factor of (γZ2)1/6.
(iv) Remarkably, for Z 
 1 there exists a Z-independent limit
on Rsc and Q∞ whose values agree with our estimates.

VI. WEAK SCREENING REGIME λZ2 � 1
AND SYNTHESIS

The analysis carried out so far relied on the concept of
the TF screening length κ−1, Eq. (47), which in the weak-
screening regime γZ2 � 1 loses its meaning as a length scale
characterizing the source region, and one has to start anew. On
the other hand, weak screening means that electron-electron
interactions can (possibly) be treated by a perturbation theory.
To lowest order in γ � 1, we set ϕ = ϕext, and then Eq. (33)
gives

n(r) = γ

4π

[
εϕext(r)

e

(
εϕext(r)

e
− 2

Re

)]3/2

. (71)

For r � a, we have εϕext/e � Z/a � Z2/3/Re 
 1/Re. Then
the density of the space charge inside the source region can
be estimated as n � γZ3/a3, implying that the number of
electrons residing at r � a, is of the order γZ3. The latter
must be much smaller than the bare charge Z (to justify the
approximation ϕ = ϕext) thus specifying the condition of weak
screening as γZ2 � 1.

Outside of the impurity region, Eq. (71) becomes

n(r) = γZ3

4πr3

(
1 − 2r

z�

)3/2

, r � Rsc = z�

2
, (72)

and n = 0 otherwise. The total screening charge is then of
order γZ3 � Z, so that q∞ = z (or Q∞ = Z), consistent with
the TF relationship, Eq. (30). The electric field at the boundary
of the space charge region can be estimated as

E(Rsc) = q∞e

εαR2
sc

� 1

z
EZ, (73)

which in view of the condition z 
 1 demonstrates the
sharpness of the boundary of the space charge region. Since
the space charge residing at r � a is small, Eq. (72) can be
used to compute with logarithmic accuracy the net charge q(r)
within a sphere of radius r > a.

A. Weyl semimetal

In the WS case when Re = ∞, the density of the space
charge is given by

n(r) = γZ3

4πr3
= gz3

6π2r3
, (74)

and we find

q(r) ≈ z − 4πα

∫ r

a

y2n(y)dy = z

(
1 − 2gαz2

3π
ln

r

a

)
.

(75)

This expression is applicable provided (2gαz2/3π ) ln(r/a) �
1, i.e., it inevitably fails at sufficiently large distance from the
source.

Alternatively, the weak screening γZ2 � 1 analysis can be
carried out by treating the cubic term of (58) perturbatively.
Then the lowest-order solution outside the source is χα = z.
The next order gives for r > a,

χα = z

(
1 − 2gαz2

3π
�

)
= z

(
1 − 2gαz2

3π
ln

r

a

)
. (76)

We observe that the expression for charge (57) (in natural
units) computed with the help of Eq. (76) agrees with Eq. (75)
to logarithmic accuracy which we adopt. Then the perturbative
expression (76) may be regarded as a charge itself: it tells us
that within the cloud, the physical potential ϕ and the density
of space charge n decrease with r faster than 1/r and 1/r3,
respectively.

On the other hand, no matter what the strength of screening
is, at sufficiently large distances from the source center the
charge q(r) is given by the asymptotic limit of Eq. (61).
All these results can be summarized in a simple interpolation
formula for the charge q = χα:

q2(r) = z2

1 + (4gαz2/3π ) ln(r/a)
. (77)

If the parameter z is viewed more broadly as the net charge
within the source region, then this equation with z = z∗ �
α−1/2 also covers the regime of strong screening γZ2 
 1
[see Eq. (61)]. This choice additionally guarantees that the
results of Sec. V B2 pertinent to the NBGS/QED case are
automatically captured.

Substituting χ = q/α into Eqs. (56) and (33), we find
corresponding interpolation formulas for the potential

ϕ(r) = Ze

εr
√

1 + (4gαz2/3π ) ln(r/a)
(78)

and the electron density

n(r) = gz3

6π2r3[1 + (4gαz2/3π ) ln(r/a)]3/2
. (79)

The logarithmic terms in the denominators of Eqs. (77)–(79)
are relevant at the scales r exceeding

Rscr � ae3π/4gαz2
. (80)

This quantity is the screening length within the space charge
of Weyl electrons. Deviations from the Coulomb law be-
come substantial for r > Rscr and the asymptotic regimes of
Eqs. (61)–(63) are reached at r 
 Rscr. Specifically, as the
strength of screening increases from small to large γZ2,
the screening radius (80) decreases from a very large value
to the scale comparable to the source size.

Since the zero charge effect is an artifact, consistency of the
theory requires that the screening length (80) to be significantly
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shorter than the radius of the electron cloud (64). Since z 
 1,
this is indeed true.

B. Narrow band-gap semiconductors and QED

The NBGS/QED case will be handled in exactly the same
manner as that of the regime of moderately strong screening
by terminating the WS solution at the scale of the space charge
region (67). Then the observable charge follows from Eq. (77)
as

q2
∞ ≈ z2

1 + (4gαz2/3π ) ln(q∞�/a)
. (81)

We see that the initial growth of q∞(z) as z, in the regime
of weak screening γZ2 � αz2 � 1, slows down eventually
saturating, in the strong screening regime γZ2 � αz2 
 1,
at z-independent value implied by Eq. (68). In the regime
of weak screening, the solution to Eq. (81) one step beyond
the zero-order q∞ ≈ z[1 − (2gαz2/3π ) ln(z�/a)] reproduces
previous findings.6

The dependence of the observable charge Q∞ of a super-
charged heavy nucleus on the bare charge Z was evaluated
in Ref. 5 by numerically solving the TF theory discussed
in our paper. The Q∞(Z) dependence was found to be a
monotonically increasing function with growth rate decreasing
with Z; for Z → ∞, the function Q∞(Z) was found to
grow slower than Z. The MVP theory6 explained the Q∞(Z)
behavior in the regime of weak screening γZ2 � 1 and
laid out a foundation to understand the regime of strong
screening γZ2 
 1; its place in the problem of screening of
overcritical external charge was explained earlier. However,
the zero-charge-type solution of the TF theory in the WS
case was missed whose consequences are the following: (i)
for a fixed, the observable charge Q∞ saturates as Z → ∞
at a Z-independent value and, (ii) for realistic a ∝ Z1/3, the
Q∞(Z) dependence is a nearly universal slowly increasing
function of Z, see Eq. (69), which goes beyond explanation of
numerical results.5

VII. DEFICIENCIES AND IMPROVEMENT OF THE
THOMAS-FERMI THEORY

Even though in the NBGS/QED case complete screening
does not occur, there are other respects in which the TF theory
is internally inconsistent. Solving Eq. (81) for the bare charge
z, we find

z2 ≈ q2
∞

1 − (
4gαq2∞/3π

)
ln(q∞�/a)

. (82)

While correctly predicting that the latter is always larger than
the observable charge, Eq. (82) also tells us that for fixed q∞

and a → 0 the denominator vanishes for finite a given by

ap � �q∞e−3π/4gαq2
∞ (83)

before the limit of point source is reached. At a = ap, the bare
charge is infinite, while for a < ap, it is imaginary; the latter
feature is certainly unacceptable. These conclusions having
their origin in the “zero charge” solution in the WS case, like
the zero charge effect itself, are artifacts. Even if the vanishing
of the observable charge did occur, the scale (83) is too small
to be of any practical importance.

In Sec. IV A, we introduced a modified TF equation (41)
with built-in quantum-mechanical fall to the center. It is
straightforward to realize that such a modification removes the
zero charge effect in the WS case; the NBGS/QED problems
are also liberated of the difficulty of the vanishing denomina-
tor. Specifically, in the WS (� = 0) case, substituting (56)
into (41), we obtain [instead of (60)] the following flow
equation:

dq

d�
= −2gα

3π
(q2 − 1)3/2. (84)

Now any “initial” charge q(0) = z > 1 will be carried to
the stable fixed point q = 1, which is reached as � → ∞.
Equation (84) can be integrated in quadratures for arbitrary
initial z with the result

q2(�) − 1 = 1

(2gα/3π )2(� + �W )2 − 1
, (85)

where the scale �W = 3πz/(2gα
√

z2 − 1) is determined by
the condition q(� = 0) = z. The corresponding spatial scale

RW = ae�W = a exp

(
3π

2gα

z√
z2 − 1

)
(86)

characterizes the size of the space charge cloud. For r 
 RW ,
the (overcritical) impurity charge appears as being poised
at the critical value. As z → 1 + 0 (a weakly overcritical
source), the cloud size (86) diverges because the creation
of spacial charge is a critical phenomenon. The Kosterlitz-
Thouless-type essential singularity in (86) is typical of local-
ization transitions related to the quantum-mechanical fall to
the center.22 For the supercritical source z 
 1, the cloud size
becomes Eq. (64). The point source limit a → 0 (� = ∞) of
the solution (85) also describes the NBGS/QED problems with
the conclusion that at arbitrary distance r from an overcritical
point source the observable charge of the latter is unity.
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