
Spin Flipper
and

Neutron Polarimetry
for the

n3He Experiment

C. B. Hayes

November 13, 2014

Abstract

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory
is a pulsed source of neutrons generated by a 1 GeV proton beam colliding
with a liquid Mercury target at 60 Hz. The n3He experiment, constructed on
Fundamental neutron Physics Beamline-13 (FnPB-13), is designed to measure
the parity violating (PV) proton asymmetry Ap in the nuclear reaction

n+3
2He =3

1H +1
1H + 765 KeV (0.1)

The asymmetry is directly related to the weak isospin conserved couplings
h0ρ and ω0

ρ which are of fundamental interest in the verification of the meson
exchange model of low energy NN intereactions. Theoretical estimates suggest
a value of Ap ∼ 3×10−7. The statistical uncertainty in the measurement of Ap
is governed by

δAp =

[
σd

P
√
N

]
(0.2)

where σd(≈ 6) is the intrinsic detector effeciency, P (≈ 96%) is the beam po-
larization, and N is the total number of neutrons involved in the experiment.
With a flux of neutrons on the order of 2 × 1011 per second, the experiment
will have a statistical sensitivity of δAp ∼ 2× 10−8 in an estimated 116 days of
run time.

In real time, the experiment will probably last about one year. Of high
importance will be several polarimetry measurements to monitor beam po-
larization and spin flipper efficiency during production of data and also after
completion of the experiment. Polarimetry will also be required before data
production for initial calibration and tests of the spin flipper.



1 Theory of the Hadronic Weak Interaction

The theory of the weak interaction is mediated by the short range W± and Z0 vector
bosons. It is a well understood theory by itself, but cannot be applied directly in a
reaction like equation (0.1) which is overwhelming dominated by strong QCD effects.
Instead, it becomes necessary to develop a theory of the Weak Hadronic Interaction
(HWI) which takes into account both strong and weak couplings simultaneously.

The first successful theory of the HWI, called the Meson Exchange Model, was
introduced by Desplanques, Donoghue, and Holstein [1] in 1980. In this model, the
strong interaction between hadrons is mediated by light virtual mesons π, ρ, and
ω. Figure 1 shows how a small weak component to the interaction is introduced by
allowing the mediator to decay weakly before coupling to the second vertex. While

Figure 1: The range of W± and Z0 bosons is to short for a direct interaction between
nucleons. Instead, the interaction is possible thru the decay of π, ρ, and ω.

the weak component represented by this diagram is 10−7 times smaller than its strong
counterpart, it is detectable experimentally as a result of the parity violation (PV)
property of the weak force.

In general, obsevables in the Meson Exchange Model are constructed from 6 un-
known coupling contants which must be measured experimentally. The most general
equation for an observable A can be written

A = a1π · h1π + a0ρ · h0ρ + a1ρ · h1ρ + a2ρ · h2ρ + a0ω · h0ω + a1ω · h1ω (1.1)

where the superscript indicates the isospin carried by the particle. The observable
for the n3He experiment is the PV asymmetry Ap of the outgoing proton. All terms
in (1.1) conribute to the interaction but only three of them are significant. An ap-
proximation of Ap simplifies the general expression to

Ap = −0.18 · h1π − 0.14 · h0ρ − 0.13 · h0ω (1.2)
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The coupling constant h1π has been measured to an accuracy of less hn 5% by the
recently completed NPDGamma experiment. The overall goal of n3He is therefore an
assessment of the zero isospin couplings h0ρ, and h0ω of the Meson Exchange Model.
Feynman diagrams associated with all couplings in (1.2) are indicated by figures 2
and 3 for reference.

Figure 2: The strong vertex on the left side of each diagram is associated with the
meson coupling constant h1π. The exchange of a πo is not possible here since neutral
spinless mesons do not contribute to parity violation.

Figure 3: The ρo and ωo are both vector particles. They carry no isospin and no
charge so both nucleons N connected to each vertex are the same.

2 Details of the n3He Experiment

The design of the n3He experiment is illustrated in figure 4. Pulses of neutrons
emerging from a super mirror polarizer (SMP) are spin aligned transverse to the
direction of motion. Individual pulses enter the RFSR which is synchronized to the
arrival of each pulse and becomes energized to flip the spins of alternating pulses with
an efficiency approaching 100 percent. Neutrons emerging from the RFSR interact
with 3He in the ion chamber producing protons and tritium in accordance with (0.1).
The value of Ap can be extracted from measurements of electrical currents induced
in wire planes within the ion chamber.
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Figure 4: Design of the n3He experiment. Complex data acquisition electronics at-
tached to the ion chamber are not shown here.

The success of this measurment hinges on the successful elimination of false asym-
metries to at least an order of magnitude less than δAp which can be achieved thru
a precision alignment of the ion chamber with the transverse holding field. Even
with precise alignment however the success of the experiment relies on high efficiency
operation of the RFSR and sound data acquisition electronics.

3 Spin Flipper

The spin flipper is a major component of the n3He experiment. It is a new design
based on the theory of double cosine theta coils, and is the first one of its kind. Two
of the most impressive properties of the spin flipper are its highly uniform interior
field, and its ability to flip either transverse or longitudinally polarized neutrons.

3.1 Design and Construction of the Spin Flipper

Pictures of the completed spin flipper are shown in figure 5. The interior of the device
is composed two grooved outer return coils (having semi-circular cross-sections) which
fit snugly around a grooved inner cylinder. The grooves are precisely machined to
accomodate about 870 feet of 18 AWG solid aluminum wire. The intricate pattern of
grooves is based on the theory of double cosine theta coils and serves the purpose of
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producing a uniform transverse magnetic field in the region inside the inner cylinder.
The coils are enclosed by a 1/4 inch thick cylindrical aluminum shell and two 1/4

inch thick end plates with square insets machined to 40 mils. The end plates are sealed
to the cylinder with RTV Silicon so that the device can filled with 4He gas to prevent
scattering of neutrons during use. The housing on top of the shell accomodates a
parallel connection of capacitors with a total capacitance of C = 17.7 nF.

Figure 5: Pictures of the n3He spin flipper. The inner cylinder is made from 12.5 inch
PVC pipe and was machined by the UT machine shop. The outer return coils are ABS
plastic and were extruded using an SLA (Stereolithographic) 3D print technology.

3.2 Fields of a Cos-Theta Coil

A cosine-theta coil is a long hollow cylindrical coil of radius Rin characterized by
a spatially uniform magnetic field in its interior which is transverse to the symmetry
axis of the coil. For the static problem, the cylinder can be characterized by an
applied surface current density

k(φ) = k sinφ ẑ̂ẑz (3.1)

which is the continuum limit of a large number of wires. The resulting field is most
easily determined using the theory of a magnetic scalar potential. In regions of zero
current density the magnetic field is characterized by

∇×H = 0 (3.2)

5



which determines the scalar potential from the relation H = −∇U .
For reference, transformation equations for the unit vectors in cartesian and polar

coordinates are:

r̂̂r̂r = cosφ x̂̂x̂x+ sinφ ŷ̂ŷy x̂̂x̂x = cosφ r̂̂r̂r − sinφ φ̂̂φ̂φ

φ̂̂φ̂φ = − sinφ x̂̂x̂x+ cosφ ŷ̂ŷy ŷ̂ŷy = sinφ r̂̂r̂r + cosφ φ̂̂φ̂φ

Potentials and fields associated with the coil can be divided into two regions: r ≤ Rin

and r > Rin. Since ∇ ·H=0, the general form of the scalar potential in either region
will be a solution to Laplace’s equation ∇2U = 0 and is of the general form

U(r, φ) = ao + bo ln r +
∞∑
k=0

(akr
k + bkr

−k)(ck cos kφ+ dk sin kφ) (3.3)

A unique solution is available through the application of the boundary condition
connecting the inside of the cylinder to the outside of the cylinder.

Figure 6: Diagram showing magnetic field lines inside and outside the radius Rin of
the cosine theta coil

(Hin −Hout)× r̂̂r̂r = k r = Rin (3.4)
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One finds interior and exterior solutions

Uin = −kr
2

cosφ Uout =
kR2

in

2r
cosφ (3.5)

and leading to magnetic fields given by

Hin =
k

2
[cosφ r̂̂r̂r − sinφ φ̂̂φ̂φ] Hout =

kR2
in

2r2
[cosφ r̂̂r̂r + sinφ φ̂̂φ̂φ] (3.6)

A graphical depiction of the magnetic fields is shown in figure 6.
The interior solution is the required constant magnetic field Hin = Hxx̂̂x̂x. The

exterior field might be referred to as a dipole field per unit length of z-axis and falling
off as r−2. It is a simple matter to verify that both fields have zero divergence and
also satisfy equation (3.4).

A real cosine-theta coil will be characterized by an integer N equal to the total
number of wires routed along the surface of the coil. The separation ∆x between
adjacent wires around the perimeter is constant and has a value

∆x =
4Rin

N
(3.7)

The magnetic field in the interior region follows by summing the contribution to the
field from each of the N wires. At the center of the cylinder the magnitude of the
field can be written

Hx =
I

2πR2
in

N∑
i=1

‖yi‖ (3.8)

where ‖yi‖ is the vertical distance of each wire from the x-axis. Now consider the
quantity

Hx ·∆x =
I

2πR2
in

N/2∑
i=1

2‖yi‖ ·∆x

 (3.9)

But if N is large, the term in parenthesis is a good approximation to the area of the
circle, or πR2

in. Now insert equation (3.7) and this derives an approximate formula
for Hx in terms of the number N. More generally, the fundamental relation

4kRin = NI (3.10)

implies that the fields of a cosine theta coil composed of N wires around (N/2 current
loops) are

Hin =
NI

8Rin

[cosφ r̂̂r̂r − sinφ φ̂̂φ̂φ] Hout =
NIRin

8r2
[cosφ r̂̂r̂r + sinφ φ̂̂φ̂φ] (3.11)
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3.3 Fields of a Double Cos-theta Coil

A theory of a double cos-theta coil follows from the introduction of a second cosine-
theta coil— concentric with the first coil and having a radius Rout. The fields of this
design are illustrated in figure 7 and show the primary purpose of ensuring that the
field external to both coils is zero. With this requirement the current densities k1(φ)
and k2(φ) will necessarily point in opposite directions along the z-axis so that scalar
potentials associated with each coil are:

Figure 7: External field lines of a double cosine theta coil with the requirement of no
external field. Field lines from the inner coil get squeezed in between Rin and Rout.

U1in = −k1r
2

cosφ r ≤ Rin U1out =
k1R

2
in

2r
cosφ r > Rin (3.12)

U2in =
k2r

2
cosφ r ≤ Rout U2out = −k2R

2
out

2r
cosφ r > Rout (3.13)

Cancellation of the field in the region r > Rout requires that current densities and
individual radii to be connected by the formula

k1R
2
in = k2R

2
out (3.14)

In addition to this, the magnitude of the interior field will be

Hrf ≡
1

2
(k2 − k1) (3.15)

Both of these equations can be written in terms of coils composed of N1 and N2 wires.
Specifically,

N1Rin = N2Rout Hrf ≡
I

8

[
N1

Rin

− N2

Rout

]
(3.16)
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Potentials for the coil in the two non-zero regions can now be written

Uin(r, φ) = −Hrfr cosφ r ≤ Rin

Uout(r, φ) =

[
R2

in

R2
out −R2

in

]
Hrf

[
r +

R2
out

r

]
cosφ Rin < r < Rout

As before, the auxillary field follows from H = −∇U . Inside the inner cylinder the
field is constant and transverse to the axis of the cylinder so that Hin = Hrfx̂̂x̂x. In the
outer region the field is more complicated and given by

Hout(r, φ) =
R2

in

R2
out −R2

in

Hrf

[
−
(

1− R2
out

r2

)
cosφ r̂̂r̂r +

(
1 +

R2
out

r2

)
sinφ φ̂̂φ̂φ

]
(3.17)

It is a simple matter to show that ∇ ·H = 0 in both regions. Current densities can

Figure 8: Computer simulation of the x-component of H for the double cosine-theta
coil. The field is complicated between the coils but is constant in the interior and
zero for all points outside the coil.

also be derived from equations similar to (3.4).

3.4 Inductance of Cosine-Theta Coils

For the theoretical infinite length coils, the meaningful quantity to calculate is the
inductance per unit length. It will be more useful however to consider the more
realistic problem of a coil with length zo.
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Indutance of a Cosine-Theta Coil: For a coil composed of N wires there are
N/2 current loops and the total flux thru the coil is given by

Φ =

N/2∑
i=1

Φi = LI (3.18)

The flux thru each current loop is given by the surface integral

Φi =

∫
s

B · dSi (3.19)

but the magnetic field is constant in this region and points in the same direction as
dS, so

Φi = Bx · Si = µoHx · Si (3.20)

where Si is the area enclosed by each loop. The total inductance is therefore

Φ = µoHx

N/2∑
i=1

Si (3.21)

and is proportional to the total area enclosed by the individual wire loops. Consider
instead the quantity

Φ ·∆x = LI ·∆x = µoHxzo

N/2∑
i=1

2‖yi‖ ·∆x

 (3.22)

which can be compared to equation (3.9). Again, the value in parentheses approxi-
mates the area of the circle of radius Rin. Using equation (3.9) the inductance of the
cosine-theta coil is

L =
µoπzo

32
N2 (3.23)

This same result also follows from a determination of the total energy stored in the
magnetic field. The energy inside the coil follows immediately as

Ein =
µoπzo

2

[
NI

8

]2
(3.24)

The stored energy outside the coil gives the same result. Now write

Etotal = 2Ein =
1

2
LI2 (3.25)

and solve for the inductance.
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Inductance of a Double Cosine-Theta Coil: The inductance of a double cosine-
theta coil is a more difficult problem to address then a cosine-theta coil. For defi-
niteness it will be assumed here that a double cosine-theta coil is defined by the
requirement of a zero external field everywhere. This is an importnat constraint on
the radii and the number of wires, and simplifies the calculation.

The total magnetic field energy in the coil in each of two regions is given by

E =
µo
2

∫
|H|2dv (3.26)

In the region r ≤ Rin the answer is almost trivial since the field is constant. One
finds

Ein =
µo
2
H2

rfπR
2
inzo (3.27)

In the region Rin < r < Rout the integral is somewhat more complicated with the
result

Eout =
µoπH

2
rfzo

2

[
R2

in

R2
out −R2

in

]2
·
[
R4

out

R2
in

−R2
in

]
(3.28)

Now use

Ein + Eout =
1

2
LI2 (3.29)

and solve the for the inductance.

L = µoπR
2
inzo ·

H2
rf

I2

[
2R2

out

R2
out −R2

in

]
(3.30)

To complete the calculation it is necessary to insert both of equation of (3.16) so that
L appears in terms of geometric quantities only. A symmetric form of the final result
is

L =
µoπzo

32
N1N2

[
Rout

Rin

− Rin

Rout

]
(3.31)

Inductance of the n3He Double Cosine-Theta Coil: The overall design ini-
tiative for the n3He double cosine-theta coil is to have every 5th wire routed along
the perimeter at Rin to be routed along the end faces of the inner cylinder. This
condition locks in the ratio of the two radii and the two numbers N1 and N2 through
the relation

Rout

Rin

=

√
5

3
=
N1

N2

(3.32)

Actual values for these quantities along with the coil length are given in table 1.
Inserting values into equation (3.31), gives an inductance of

L = 2.01265 mH (3.33)

This value is in excellent agreement with experimentally measured values obtained
from resonance curves using a known capacitance.
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No. Length

N1 = 320 Rin = 6.320 in.
N2 = 248 Rout = 8.159 in.

zo = 15.60 in.

Table 1: Specifications for the n3He double cosine-theta coil

Independent Evaluation of L: Inductance of the double cosine-theta coil using
specifications in Table 1 can also be deterimined from a good understanding of the
derivation for the cosine-theta coil given previously. The total flux thru the inner
cylinder is

Φ = µoHrf

N/2∑
i=1

Si (3.34)

which is identical to equation (3.21) except that Hx has been replaced by the quantity
Hrf . Solving for the quantity Lin in the same manner gives

Lin =
µoHrfπR

2
inzo

I ·∆x
(3.35)

But equation (3.32) can be inserted into equation (3.16) to show that

Hrf

I
=

1

∆x
=

N

4Rin

(3.36)

where N = 64 for the inner cylinder. The final result is

Lin =
µoπzoN

2

16
(3.37)

which is double the result for a cosine-theta coil. To determine the contribution from
outer cylinder loops it is only necessary to note that the total flux through the top
half of the inner cylinder runs entirely through the top half of the outer cylinder. The
only difference is that this flux traverses four times as many wire loops. This means
that Lout = 4 · Lin. The total inductance for the n3He coil is therefore

L =
5

16
µoπzoN

2 (3.38)

This is a useful formula for L given exclusively in terms of the number of wires routed
along the inner cylinder.
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3.5 Spin Flipper and Spin Magnetic Resonance

The rotation of neutron spins inside the spin flipper is easily decribed by the classic
two state problem of Spin Magnetic Resonance (SMR). Spins emerging from the
Super Mirror Polarizer are initially polarized along the direction of the magnetic
holding field Bo which has a magnitude of 9.134 Gauss. Figure 9 shows these vectors
along with the transverse field Brf produced by the spin flipper. The neutron has a

Figure 9: Magnetic field vectors. The direction of Brf oscillates in the horizontal
plane at 26.6 kHz.

magnetic moment
µ = gnµn = −1.9130427µn (3.39)

where gn is the spin g-factor and where µn is the nuclear magneton given by

µn = e~/2mp = 5.050783× 10−27J/T (3.40)

The neutron gyromagnetic ratio is determined beginning with the general equations

E = −µ ·B µ = gn
e

mp

S (3.41)

For neutrons inside an energized spin flipper, the magnetic moment interacts with
the total field

B = Boẑ̂ẑz +Brf cosωtx̂̂x̂x (3.42)

and this field defines two frequencies

ωL ≡ γnBo ωF ≡ γnBrf (3.43)

The first frequency is the Larmor frequency of neutrons in the holding field which
translates to a Larmor precession frequency of

νL = 26.6390298 kHz (3.44)
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The second frequency is specifically associated with the RF field and the number γn
is the gyromagnetic ratio given by

γn = gn
e

mp

= 1.83247165× 108 1

sT
(3.45)

When the spin flipper is off, the initial quantum mechanical hamiltonian for the
neutrons interacting with the holding field is represented by the simple two state
matrix

H =

~ωL2
0

0 −~ωL
2

 (3.46)

and the initial spin state |ψ> for the beam is derived from a knowledge the initial
beam polarization of approximately 95%.

The entrance of the neutrons into the interior region of the spin flipper marks
the presence of a time-dependent perturbing potential energy which modifies the off-
diagonal elements of the two state hamiltonian leading to

H → ~
2

 ωL 4ωF e
iωt

4ωF e
−iωt −ωL

 (3.47)

and where ωF << ωL. In general, the frequency of the perturbing potential can be
anything but to rotate neutron spins by 180 degres with a probability approaching
1, it is necessary to drive the spin flipper at resonance where ω → ωL. At this
frequency, the probability of finding neutrons in the spin flipped state derives from
the Rabi formula and is given by

P (−1) = sin2 (2ωF t) (3.48)

For neutrons of specific energy E, this means we choose ωF based on the total time δt
these neutrons are exposed to the RF field. The angular frequency (rate of neutron
flip) must be

ωF = π/δt (3.49)

but since the spin flipper is characterize by a field which will oscillate at frequency ωL
(i.e not constant and not rotating at this frequency) then the appropriate equation
for the RF magnetic field will be

Brf (t) =
2ωF
γn
· eiωLt (3.50)
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Table 2: Table

No. λ velocity(vn) δt

1 6.5A 608.620 m/s 0.6510 ms
2 5.0A 791.205 m/s 0.5008 ms
3 3.5A 1,130.294 m/s 0.3505 ms
4 2.5A 1,582.411 m/s 0.2504 ms

SMR for a Wavelength Spectrum: The flux of neutrons through the spin flipper
is actually composed of a distribution of de Broglie wavelengths in the approximate
range 2.5A ≤ λ ≤ 6.5A. For reference, Table 2 gives an indication of selected neutron
velocities in this range along with the total time spent inside the spin flipper. The
length of the spin flipper is 39.62 cm.

The angular rate of neutron flip is given by equation (3.49) and this means that
ωF will depend on the wavelength of the neutron according to

ωF =
πh

zomλ
(3.51)

For a given pulse of neutrons, the amplitude of the RF field inside the spin flipper

Figure 10: Magnetic field envelope provided by the spin flipper. The region of zero
field between the pulses transmits neutrons without flipped spins.

will therefore be required to decrease with a 1/t dependence over a time interval ∆t
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and having the general form

Brf (t) =
Bmax

t
eiωLt (3.52)

An example plot of the RF field envelope provided by the spin flipper is shown in
Figure 10. The spin flipper triggers-on at time ti simultaneous with the arrival of the
front of the pulse and then triggers-off at a time tf later. The SNS provides pulses of
neutrons at 60 Hz implying that that the width of a pulse is

∆T = tf − ti = 16.67 ms (3.53)

The fastest neutrons will be located at the front of the pulse and recieve that portion
of the RF field with the largest amplitude. In contrast, the slowest neutrons are at
the back of the pulse and recieve the smallest field amplitude. The total time spent
by any neutron in the spin flipper is δtλ which is much smaller than the width of the
pulse.

3.6 RF Power Requirements for the Spin Flipper

The double cosine-theta coil of the spin flipper has an inductance L and resistance
R based on the total length of wire used. Under an applied AC voltage it behaves
as an LR circuit. However, the n3He experiment will require an RF field to rotate
neutron spins and this means that an external capacitor will be required so that the
spin flipper can be driven as an RCL circuit. A schematic of the circuit is shown in
Figure 11. The required RF frequency is the Larmor frequency ωL of neutrons in the

Figure 11: The spin flipper is represented by the red dashed line. An appropriately
chosen external capacitance must be added separately.

external holding field of the experiment. The inductance of the double cosine-theta
coils has also been calculated previously and the capacitance is easily determined as

C = 1/ω2
LL ∼ 17.70 nF (3.54)
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The only other information needed for the RCL circuit is the resistance R of
the spin flipper which is determined by the 870 length of wire and the resistivity of
aluminum. For convenience, values of all circuit elements are summarized in Table 3:

R C L
9.11 Ω 17.70 nF 2.01 mH

Table 3: Values of passive circuit elements for the spin flipper

Power Formula: With an applied external voltage V (t) = Voe
iωLt, the steady state

differential equation for the spin flipper circuit can be written in terms of the charge
Q(t) on the capacitor:

L
d2Q

dt2
+R

dQ

dt
+
Q

C
= Voe

iωLt (3.55)

Differentiating the well known solution to this equation leads to the current formula

I(t) =
Vo[

R2 + (ωL− 1
ωC

)2
]1/2 · sin(ωt+ φ) (3.56)

and the average power supplied to the circuit over one cycle is Pavg = 1
2
I2ωR or

Pavg =
V 2
o R/2

R2 + (ωL− 1
ωC

)2
(3.57)

If the spin flipper is operated at resonance then Vo = IR ≈ 5.0 Volts and

Pavg =
V 2
o

2R
≈ 1.4 Watts (3.58)

Resonance Curve: An important indicator for any RCL circuit is its Q-value
which is defined by the relation:

Q = ωL ·
Total stored energy

Average power supplied at resonance
(3.59)

For the spin flipper:

Q =
ωLL

R
≈ 37.2 (3.60)

This is a large value and qualifies the spin flipper as an underdamped oscillator. It can
also be approximated from the resonance curve shown in Figure 12. Individual points
on this curve were made available using a small probe placed near the center of the
spin flipper and attached to an SR860 lock-in amplifier. The precise measurements
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Figure 12: Resonance Curve

required matching the frequency on the lock-in amplifier with the driving frequency
of the function generator. Characteristics of the curve are

Vmax = 2.916 mV @ f = 26.655± 0.005kHz FWHM ≈ 1.4kHz (3.61)

The Q-value can be determined from the curve from the quantity f/∆f where ∆f is
half of the FWHM.

4 Polarimetry for the n3He Experiment

Polarimetry measurements on the neutron beam are an essential part of the n3He
experiment for several reasons: The statistical evaluation of the constant Ap requires
that a large beam polarization be maintained and it is therefore necessary to report on
beam polarization at various time intervals during the experiment. Equally important
are interim checks to verify proper tuning of the external holding field to the spin
flipper.

It is expected that polarimetry measurements will be conducted 4-5 times during
the course of the experiment with mandatory measurements before and after the
production of data. A polarimetry measurement will consist of the following:

• Measurement of the polarization Pn(λ) of the neutron beam transmitted by the
Super Mirror Polarizer as a function of wavelength.
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• Measurement of the efficeincy εsf (λ) of the spin flipper as a function of neutron
wavelength.

• Optimization of the Spin Flip Ratio to ensure proper tuning of the external
magnetic holding field. A tuned holding field maximizes spin flipper efficiency
and minimizes de-polarization thru the Spin flipper.

The polarization of the neutron beam and the spin flipper efficiency can be measured
redundantly at two different 3He cell polarizations to ensure a correct analysis. The
optimization curve reulting from the third bulleted item can be measured at three
or more perturbations of the magnetic holding field. Minimum values for a succesful
statistical result for the n3He experiment are

P̄n > 95% ε̄sf > 98% (4.1)

where the overbar indicates an average over the wavelength range of approximetely
3.0 - 6.5A. There is little reason to believe that initial values of beam polarization and
spin flipper efficiency will change much during the experiment. However, any values
for these two quantities which are out of specification must be reported immediately.

4.1 Fundamentals of Neutron Polarimetry

The ability to perform accurate polarimetry measurements for the n3He experiment
requires knowledge of the science of neutron polarimetry. The spin filter is a glass
cell filled with 3He so the essential problem will be to understand what happens to
a beam of neutrons upon transmission thru a gas of either polarized, or unpolarized
3He.

Properties of a 3He Spin Filter: A 3He spin filter can also be referred to as an
analyzer cell or a 3He cell. Nuclear spins of 3He atoms inside the cell can be polarized
using the technique of Spin Exchange Optical Pumping(SEOP), and a significant
portion of the initial polarization can be maintained for a period of several days
in a uniform holding field. This property when coupled with the very strong spin-
dependent capture cross section make a 3He cell ideal for performing polarimetry
measurements on a beam of cold neutrons.

The capture cross-section for cold neutrons in a 3He cell can be modeled as a
linear function of wavelength as long as the wavelengths are not too small:

σ(λ) ∼ σo
λo
λ (4.2)

The ratio of the constants σo and λo represent an instrinsic property of the cell
representing its ability to capture neutrons. The likely cell for the n3He experiment
will be ”Hedy Lamarr” discussed in [9], and characterized by

σo = 5316 bn λo = 1.798A (4.3)
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Other important dimensions are its diameter d = 7.5 cm and its length ` = 10.3 cm.
The Cell Thickness is defined by the equation

χ ≡ nσo`

λo
(4.4)

where n is the number density of atoms in the cell. Using a known value of χ = 1.004
implies that Heddy Lamar has a 3He number density of

n = 3.396× 1025 atoms/m3

Transmission of Unpolarized Neutrons through an Unpolarized Cell: Now
suppose a flux To(λ) of unpolarized neutrons is incident on an unpolarized cell. Omit-
ting a formal derivation, the percentage of transmitted neutron flux is known to be

T (λ) = To(λ)e−χλ (4.5)

The function To(λ) is a density function characteristic of the pulsed source at the

Figure 13: A model for a neutron beam flux over a wavelength range 2.5-6.5
Angstroms and the resulting transmission emerging from the cell

SNS but it will suffice to consider a simple model for To(λ) having the form

To(λ) = sin
[π

4
(λ− 2.5)

]
(4.6)

Figure 13 shows a plot of this function on th left and also shows the flux emerging from
the unpolarized cell on right. Of particular interest is the observation that transmitted
flux is relatively small compared to the intial flux indicating that the cell has absorbed
most of the neutrons. In addition to this the distribution is skewed in favor of smaller
wavelengths. The argument here is that smaller wavelengths imply faster neutrons
which spend less time in the cell and therefore have a smaller probability of being
absorbed. It is important to mention that the transmittance of the beam thru the
cell is independent of the initial polarization of the beam. A beam polarized in an
arbitrary direction will transmit just as many neutrons as an unpolarized beam. This
is only true if the cell is unpolarized.
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Transmission of Unpolarized Neutrons thru a Polarized Cell: A more in-
teresting problem is an unpolarized neutron beam incident on a 3He cell having a po-
larization P . The initial beam can be thought of as having equal numbers of neutrons
parallel and anti-parallel to the polarization direction of the cell. The transmission
of each component can be written

Tpa(λ) = 1
2
To(λ)e−χλ(1−P ) Tap(λ) = 1

2
To(λ)e−χλ(1+P ) (4.7)

and the total transmission thru the cell is

T (λ) = Tpa + Tap = To(λ) · e−χλ cosh(χλP ) (4.8)

For reference, figure 14 shows a plot of the transmission of each component for a cell
polarized to P = 0.5. Once again, the presence of the cell eliminates a large portion
of the initial beam but the transmission of spins parallel to the polarization direction
of the cell is much larger than anti-parallel spins.

Figure 14: Transmission of individual components of an unpolarized beam thru a
polarized cell. Parallel component in blue and anti-parallel component in red.

An important calculation is the polarization of the beam after transmission thru
the cell:

Pn(λ) =
Tpa − Tap
Tpa + Tap

= tanh(χλP ) (4.9)

Since the initial beam is unpolarized, the quantity Pn(λ) can be referred to as the
analyzing power of the cell at wavelength λ—a measure of the ability of the cell to
polarize the beam.
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Transmission of Polarized Neutrons thru a Polarized Cell: Now suppose the
initial neutron beam polarization is Pn(λ). The transmitted beam flux through the
cell for parallel and anti-parallel components of the beam is

Tpa(λ) = 1
2
To(λ) [1 + Pn] e−χλ(1−P ) (4.10)

Tap(λ) = 1
2
To(λ) [1− Pn] e−χλ(1+P ) (4.11)

and the total transmission through the cell can be written

T (λ) = Tpa(λ) + Tap(λ) = To(λ) · e−χλ [cosh(χλP ) + Pn sinh(χλP )] (4.12)

By setting P → 0 in this formula, the transmission through an unpolarized 3He cell
is recovered. This may be considered as a proof that transmission through an unpo-
larized cell is independent of the initial beam polarization.

When both the beam and the cell are polarized it is convenient to consider sep-
arate cases where the beam polarization is either parallel or anti-parallel to the cell
polarization. Plots for both cases are shown in figure 15 assuming a typical BL-13
initial polarization of Pn = 0.95 and a cell polarization of P = ±0.5. From the plots

Figure 15: Transmission of individual beam components for beam polarization parallel
and and anti-parallel to cell polarization.

it is evident that when the beam polarization is parallel to the cell polarization, there
exists a large transmitted parallel component while the anti-parallel component is
virtually non-existent. In contrast, if the beam and cell polarization are anti-parallel
both components are highly supressed.

A calculation of the polarization of the emerging beam shows that

P ′n(λ) =
tanh(χλP ) + Pn

1 + Pn tanh(χλP )
(4.13)

and this is plotted in figures 16. For parallel beam and cell polarizations the emerging
beam is almost completely polarized. When the polarizations are antiparallel, the
polarization of the emerging beam is dependent on the wavelength of the transmitted
neutrons.
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Figure 16: Plots showing emerging polarization of a beam when beam and cell polar-
izations are (1) parallel, and (2) anti-parallel.

4.2 Polarimetry with a Spin Flipper

Fundamental polarimetry presented thus far assumes only the existence of a beam
and a 3He cell—either of which may be polarized or unpolarized. However, the
initial beam has a large polarization from a super mirror polarizer approaching 95%.
Moreover, the spin flipper is an integral part of the experiment which is capable of
reversing the polarization of the beam at a rate of approximately 500 times a second.
It can be used as a tool to measure both beam polarization and cell polarization, but
also has the internal property of spin flip efficiency εsf which must be measured since
its value is an important statistical parameter in the experiment.

Calculation of Beam Polarization: The polarization Pn(λ) of the neutron beam
can be determined from independent measurements with a polarized cell and an un-
polarized cell. The transmission thru an unpolarized cell has already been determined
to be

Tunp = To(λ) · e−χλ (4.14)

The spin flipper can be on or off here since the transmission through the cell favors no
direction of the incoming spins. Now suppose transmission measurements are made
thru a polarized cell with the spin flipper on and off. Refer to these transmissions as
Ton and Toff , and define relative transmission coefficients R1 and R2 by

R1 ≡
Ton
Tunp

R2 ≡
Toff
Tunp

(4.15)

For a polarized beam incident on a polarized cell, the total transmission through the
cell is given by equation 4.12. If the polarization is reversed by the spin flipper having
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an efficiency εsf , then the values of R1 and R2 will be

R1 = cosh(χλP ) + Pn sinh(χλP ) (4.16a)

R2 = cosh(χλP ) + αPn sinh(χλP ) (4.16b)

where α = 1− 2εsf . Solving for cosh(χλP ) in terms of R1 and R2 leads to

cosh(χλP ) =
R2 − αR1

1− α
(4.17)

Now solve equation 4.16a for Pn

Pn =
R1 − cosh(χλP )

sinhχλp
(4.18)

and insert equation 4.17 to determine the formula by which the polarization of the
neutron beam can be determined. One finds

Pn(λ) =
R1 −R2√

[R2 − (1− 2εsf )R1]2 − 4ε2sf

(4.19)

It is important to observe here that polarization values get smaller as the value of εsf
is increased near the value of 1. An approximate formula can be determined in the
form

Figure 17: Beam Polarization vs neutron wavelength.

Pn = −mεsf + b (4.20)

This means that the effect of excluding spin flipper efficiency in the calculation of
beam polarization is to give a result which is somewhat smaller than it actually is.
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The model for spectral beam flux in figure 13 predicts a beam polarization which
is absolutely independent of wavelength. An actual experimental polarization curve is
illustrated in figure 17. The experimental curve is only good for wavelengths greater
than about 3.5 Angstroms and the polarization above this value has a small non-zero
slope. A useful number here is the average polarization P̄n = 0.9338 from 3.5-6.5
Angstroms.

Calculation of the Spin Flipper Efficiency: The experimental spin flipper effi-
ciency εsf (λ) can be calculated based on transmission measurements of the polarized
neutron beam through a polarized 3He cell having spins which can be flipped by Adi-
abatic Fast Passage (AFP). If the spin flipper is initially off, the total transmission
through the cell with polarizations P and −P is

T = To(λ)e−χλ [cosh(χλP ) + Pn sinh(χλP )] (4.21a)

Tafp = To(λ)e−χλ [cosh(χλP )− Pn sinh(χλP )] (4.21b)

which determines the polarization quantity

Poff =
T − Tafp
T + Tafp

= Pn tanh(χλP ) (4.22)

If the procedure is repeated with the spin flipper turned on equations (4.21) are
modified to read:

Figure 18: Plot of εsf (λ) for the n3He spin flipper.

T = To(λ)e−χλ [cosh(χλP ) + αPn sinh(χλP )] (4.23a)

Tafp = To(λ)e−χλ [cosh(χλP )− αPn sinh(χλP )] (4.23b)
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and a new polarization quantity is

Pon =
T − Tafp
T + Tafp

= αPn tanh(χλP ) (4.24)

The two values Poff and Pon are determined from measurable quantities produced by
the beam monitor, and they are easily shown to determine the spin flipper efficiency
from

εsf =
1

2

[
1− Pon

Poff

]
(4.25)

This calculation initially assumes that the action of the AFP flip does not de-polarize
the beam; But realistically, each AFP flip produces a cell de-polarization on the
order of a few percent. An easy way to get around this is to perform transmission
measurements using an extra AFP flip back to the initial polarization of the cell. One
can then average the initial transmission with the transmission following two AFP
flips. Formulas for the emerging beam polarization are then modified to read[

Poff
Pon

]
=
T̄ − Tafp
T̄ + Tafp

(4.26)

Calculation of the Spin Flip Ratio: An important polarimetry measurement is
the spin flip ratio which is the ratio of transmitted signals thru a 3He cell from a
polarized beam before and after the polarization of the beam is reversed by the spin
flipper. The spin flip ratio is very sensitive to the efficiency εsf of the spin flipper.
Mathematically, Qsfr is defined by

Qsfr ≡
Toff
Ton

(4.27)

For a polarized beam incident on a cell of polarization P this ratio is determined by
equation (4.16)

Qsfr =
R1

R2

=
1 + Pn tanh(χλP )

1 + αPn tanh (χλP )
(4.28)

If the cell is not polarized then P = 0 and the spin flip ratio is 1. An upper
limit to Qsfr is also available by considering large values inside the arguments of the
hyperbolic tangents

Qsfr(max) = lim
χλP→∞

Qsfr =
1 + Pn

1 + αPn
(4.29)

For a spin flipper efficiency approaching 1 and a beam polarization of 95% this number
has a value of about 30− 40 with a dependency on the wavelength not indicated by
the model. A plot Qsfr(λ) is shown in figure 19 for three different magnetic field
settings.
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Figure 19: Three plots of Spin Flip Ratio vs time bin for slightly modified values of
magnetic field.

The spin flip ratio might also be defined by making transmission measurements
before and after reversing the polarization of the 3He cell by AFP flip. The spectral
value Qsfr(λ) will certainly be similar to the original spin flip ratio but differences
will result because of slight de-polarization of the cell which can be written

P −→ κP (4.30)

where κ ∼ 0.98. For this reason only the first definition will be considered.

Tuning the External Field to the Spin Flipper: As already mentioned, one
of the primary reasons for performing polarimetry measurements during the n3He
experiment is to ensure that the value Bo of the magnetic holding field is properly
tuned to the resonant frequency of the spin flipper. Tuning is performed by measuring
the spin flip ratio at several values of magnetic field near the value which maximizes
Qsfr. The resulting plot is necessarily parabolic and shows the optimal setting for
Bo. An example is shown in figure 20. The curve for the optimation is

Qsfr = Qsfr(max) + C · (B −Bo)
2 (4.31)

where B is the tunable magnetic field variable and C is a large negative constant hav-
ing a value of approximately 500− 1000G−2. A derivation of this curve is somewhat
complicated but can be determined by setting εsf equal to the quantum mechanical
Rabi formula

εsf =
ω2
F

ω2
F + (ωL − ωrf )2

sin2

[√
ω2
F + (ωL − ωrf )2

t

2

]
(4.32)
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Figure 20: SFR plotted against small deviations of magnetic holding field away from
the optimal Bo.

The frequency ωF is determined by equation (3.51) and represents the rate of neutron
flip inside the spin flipper while ωrf is the driven frequency of the RF field inside the
spin flipper. The frequency ωL is the Larmor frequency of neutrons in the holding
field and is the variable quantity in the Rabi equation. The efficiency is maximized
when ωL → ωrf so that

A(ωL) =
ω2
F

ω2
F + (ωL − ωrf )2

−→ 1 (4.33)

and equation (4.31) follows by inserting A(ωL) into (4.28) and expanding in terms of
the small quantity

δ = (ωL − ωrf )/ωF (4.34)

Concluding Remarks Initial construction of the n3He experiment is nearing com-
pletion. Settings for the guide field have been finalized for alignment with the ion
chamber. In the coming weeks designers of the experiment are hoping to determine
the centroid of the neutron beam by performing XY- beam scans at different locations
along the beam; knowledge of the beam centroid should improve overall statistical
uncertainty of the experiment. Under ideal conditions the experiment will be in
production mode for most of 2015.
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