Data Acquisition System(DAQ) for the n-³He Experiment at SNS

Latiful Kabir

University of Kentucky for the n-³He Collaboration

APS April Meeting Savannah, GA, April 6th, 2014

DAQ for n³He

Outline

- The n-³He experiment -Motivation -Experimental Setup
- DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements

<u>Outline</u>

 \Box The n-³He experiment - Motivation -Experimental Setup \Box DAQ for n-³He experiment -Expectations -ADC modules -A Complete Network -Software -Measurements Conclusion, In Progress And Beyond

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements

The n-³He Experiment

High-precision measurement motivated to probe the hadronic weak interaction by measuring the parity violating asymmetry of the proton in the reaction-

Expected to be extremely small (of the order 10⁻⁷)
 Goal is to measure an asymmetry in the reaction to a precision of 2 x 10⁻⁸

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements

Experimental Setup

□n-³He is using a spin flipper with transverse windings which allows for both longitudinal and transverse spin rotation.

 \Box ³He ion chamber – both target and detector

Detectors work in current mode.

4

DAQ for n³He

Outline

DAQ for n-³He - Expectations

- Large amount of data, very high sample rate but very low ADC noise.
- □High channel density with simultaneous input.
- □ Maximum sampling rate but the file size manageable /durable.
- \Box Triggering using software taking accelerator T₀ as input.
- □ Can take data only in our region of interest.
- Time bin and the number of entries per run can be adjusted.
- \Box Synchronization of all the ADC modules with T₀
- \Box Checksum algorithm to detect corrupt data .
- Built in event header.

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements

DAQ for n-³He – Expectations for systematics

- \Box 1st plane of the detector : 10 V \rightarrow Full Scale
- □Back plane of the detector: 0.1% of Full Scale
- \Box Size of asymmetry: A~10⁻⁷
- \Box Expected uncertainty in asymmetry : $\Delta A = 2x \ 10^{-8}$ (Statistical)
- **D** Expected maximum contribution from systematics:

$$\Delta A_{sys}$$
= 10% of ΔA

 \Box Expected $\Delta A_{sys} < 10^{-9}$

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements

DAQ for n-³He -ADC Modules

- Delta sigma technology based ADC (ACQ1002) by d-tAcq Solutions
- Zynq 7000 series hybrid FPGA + 2 ARM CPU cores + FMC
- □ 24 bit ADC per channel for true simultaneous analog input.
- □ Maximum sampling rate 128 kSPS (minimum is 8 kSPS) per channel.
- □2x24 Channels per module
- □Signal to noise ratio is 104 dB (high speed) or 108 dB (high resolution)
- □1GB DDR memory on board
- External clock, trigger, internal clock.
- Runs embedded Linux
- Firmware on a SD card, can be updated easily.

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements

ADC Modules

The DAQ can be accessed through ssh or console.

□ It has several separate sites for capture and configuration.

- □The data is transferred and saved to control computer using TCP/IP connection(e.g. netcat).
- Supports EPICS CSS for controlling the DAQ.

Data and run time parameters can be viewed in real time using CSS.

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements

Conclusion In Progress and Beyond

clk_count		6643431272130		49138604 Hz	d0 SHOT
sample_count	0	180290		10014 Hz	27
TRG		soft	dO	falling	CLKDIV
CLK	ex	ternal	dl	falling	1
SYNC	in	ternal	dO	falling	
EVENT1	d	sable	dO	falling	

CS-Studio

🖉 acq435.opi 🖇

🖀 acq420_launcher.opi 🛛 🔛 acq2006clktree.opi

A Complete Network

DAQ for n³He

Outline

- The n-³He experiment -Motivation -Experimental Setup
- DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements
- Conclusion In Progress and Beyond

<u>Software</u>

Analyze the binary data with ROOT without saving as root file.
 TBranchBinary

- Allows one to interpret binary files as ntuples without actually reading them into an ntuple.
- Gives access to all features of TTree.
- Access to any ROOT classes.

Prototype GUI with DAQ control and online analysis.Prototype analysis library based on TBranchBinary.

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements

Measurements

Bare ADC noise was measured to be 27micro volt at 50KHz sample rate.

Performance of ADC and its noise with different sample rate.

□Based on counting statistics , running the DAQ at 50KHz and then averaging 20 successive points will give most optimal ADC noise.

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements

Measurements

□ Autocorrelation for ADC noise

DAQ for n³He

Instrumental asymmetries with RFSF

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements

- Sources of false asymmetries:
- •Ground loops
- •Electrostatic couplings
- •Power supply couplings
- •Circuit to circuit couplings
- and many others

Instrumental asymmetries with RFSF

Took equal number of entries between two T₀ pulses.
 Subtracted two adjacent (ON/OFF)states then normalized by the full scale of the ADC(20 Volts)

 $A_1 = (V_1 - V_2)/20$ $A_2 = (V_3 - V_4)/20$ etc. Asymmetry, $A = (A_1 + A_2 + A_3 + + A_N)/N$

 To calculate uncertainty in false asymmetry, made a histogram for asymmetry of individual pair, A_κ, k-1,2,....N
 Calculated width σ (sigma or RMS) of the histogram. Then, ΔA= σ /√N

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements

Instrumental asymmetries with RFSF

Analysis of 5 hour of data at 25KHz shows that-

Asymmetry = 2.64 x 10⁻¹⁰ ± 1.64 x 10⁻¹⁰

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements

Conclusion, In Progress and Beyond

Conclusion:

- □We have a DAQ system which meets all of our requirements and gives instrumental asymmetry as small as ~10⁻¹⁰
- □We have the prototype analysis library based on TBranchBinary which enables data analysis using ROOT.

In Progress:

Upgrade prototype GUI and analysis library.

Measure false asymmetry with the whole system and improved grounding/shielding.

Beyond:

Online online analysis :

- Exploring plot in the browser.
- -Weboot
- ROOT with IPython notebook.

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements

n-³He Collaboration

INSTITUTION	RESEARCHER	CATEGORY	2014 EFFORT			
DUKE UNIVE	RSITY, TRIANGLE UNIVE	RSITIES NUCLEAR	LABORATORY			
	PIL-NEO SEO	RESEARCH STAFF	10			
ISTITUTO NAZIONALE DI FISICA NUCLEARE, SEZIONE DI PISA						
	MICHELE VIVIANI	RESEARCH STAFF	15			
OAK RIDGE	ATIONAL LABORATORY	r				
	SEPPO PENTILLÄ	RESEARCH STAFF	70			
	DAVID BOWMAN	RESEARCH STAFF	70			
	VINCE CIANCIOLO	RESEARCH STAFF	10			
UNIVERSITY	OF KENTUCKY					
	CHRIS CRAWFORD	FACULTY	50			
	KABIR LATIFUL	GRAD STUDENT	100			
WESTERN K	ENTUCKY UNIVERSITY					
	Ιναν Νονικον	FACULTY	70			
	TBD	UNDERGRADUATE	100			
UNIVERSITY	OF MANITOBA					
	MICHAEL GERICKE	FACULTY	30			
	V. TVASKIS	POSTDOC	10			
	MARK MCCREA	GRAD STUDENT	100			
	CARLOS OLGUIN	GRAD STUDENT	100			
UNIVERSIDA	D NACIONAL AUTÓNOM	A DE MÉXICO				
	LIBERTAD BARON	FACULTY	50			
	ANDRÉS NARANJAS	GRAD STUDENT	100			
UNIVERSITY	OF NEW HAMPSHIRE					
	JOHN CALARCO	FACULTY	50			
UNIVERSITY	OF SOUTH CAROLINA					
	VLADIMIR GUDKOV	FACULTY	5			
	YOUNG-HO SONG	POSTDOC	5			
UNIVERISTY	OF TENNESSEE					
•	GEOFF GREENE	FACULTY	30			
	NADIA FOMIN	FACULTY	30			
	IRAKLI GARRIBALDI	POSTDOC	50			
	CHRIS HAYES	GRAD STUDENT	100			
	CHRIS COPPOLA	GRAD STDUENT	100			
UNIVERISTY	OF TENNESSEE AT CHA	TTANOOGA				
*	JOSH HAMBLEN	FACULTY	75			
	CALEB WICKERSHAM	UNDERGRADUATE	100			
UNIVERSITY	OF VIRGINIA					
	S. BAESSLER	FACULTY	20			

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements

Backup Slides

Autocorrelation Plots for ACQ164 ADC Noise

1.Formalism Followed:

Autocorrelation plots are formed by

• Vertical axis: Autocorrelation coefficient

$$R_h = C_h/C_0$$

where C_h is the autocovariance function

$$C_h = \frac{1}{N} \sum_{t=1}^{N-h} (Y_t - \overline{Y}) (Y_{t+h} - \overline{Y})$$

and C_{θ} is the variance function

$$C_0 = \frac{\sum_{t=1}^{N} (Y_t - \overline{Y})^2}{N}$$

Note that R_h is between -1 and +1.

• Horizontal axis: Time lag h (h = 1, 2, 3, ...)

2. In the data set there were few (3 or 4) values which were completely out of any scale (10⁹ times out of scale), those ADC values were replaced by hand by the average of previous and next ADC value.

3. X-axis unit: 1 lag= 100 micro second(for 10Khz) or 20 micro second (for 50KHz), Y-axis unit: Unitless

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements

Zynq-7000 All Programmable SoC

Based on the Xilinx All programmable SoC architecture, the Zynq®-7000 All Programmable SoCs enable extensive system level differentiation, integration, and flexibility through hardware, software, and I/O programmability.

Using the Zynq-7000 platform, you can design smarter systems with tightly coupled software based control and analytics with real time hardware-based processing and optimized system interfaces — with vastly lower BOM costs, lower NRE costs, lower design risk, and of course much faster time to market. All six Zynq devices (Z-7010, Z-7015, Z-7020, Z-7030, Z-7045, Z-7100) are optimized for specific combinations of system power, cost, and size to meet the needs of smarter control, smarter vision and smarter networks.

This comprehensive Platform offers:

- Silicon Devices Zynq-7000 Full-Featured Processing Platform
- Development Platforms Traditional hardware development and virtual development platforms
- Operating Systems Open Source Linux, Android, FreeRTOS
- Design Tools Vivado® Design Suite, Xilinx SDK, PetaLinux SDK
- IP Plug and Play

Smartest Solution for a Wide Range of System Design Problems

Xilinx Zynq-7000 All Programmable SoCs are the Smartest Solution for a wide range of system-design problems in all markets, across the entire application spectrum. Learn more about the 9 reasons why:

Enabling Smarter Systems	Most efficient ARM + FPGA for analytics & control Extensive OS, middleware & stack ecosystem Highest level of security & reliability Learn More >	
Unmatched Performance and Power	Highest Performance SoC Largest & Highest Performance Memory System Lowest Power and Fastest Logic Fabric Learn More >	
Proven Productivity	 Industry-leading high-level synthesis Widest selection of software environments and tools Largest portfolio of IP, design kits, and reference designs Learn More > 	

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

- DAQ for n-³He -Expectations -ADC modules -A Complete Network
- -Software
- -Measurements

Recently, there has emerged a greater need for different front panel IO functionality within systems. Typically, this front panel IO functionality was fixed on 3U or 6U form factor cards, or it was configured with PMC or XMC modules. Previously, 3U and 6U form factor card design used a fixed front panel IO, which addressed a particular function. Changing the front panel IO functionality meant replacing the 3U or 6U cards. PMC and XMC modules provided configurable front panel IO for 3U and 6U form factor cards. However, PMC and XMC modules use much of the 3U and 6U carrier card area.

FPGA Mezzanine Card, or FMC, as defined in VITA 57, provides a specification describing an I/O mezzanine module with connection to an FPGA or other device with reconfigurable I/O capability. The low profile design allows use on popular industry standard slot card,

4DSP: FMC104

Alpha Data: ADPE-XRC-5T

Faster Technology: FM-S18

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network -Software -Measurements

Conclusion In Progress and Beyond

blade and motherboard form factors, including VME, VPX, CompactPCI, AdvancedTCA, MicroTCA, PCI, PXI, and many other low profile motherboards. The compact size is highly adaptable to many configuration needs and compliments existing common low profile mezzanine technology such as PMC, XMC, and AMC.