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Abstract

The n3He experiment constructed on FnPB [Fundamental neutron Physics Beamline-

13] probes the PV [parity violating] nuclear force by measuring the statistical

distribution of decay protons which result from the interaction of helium-3 nuclei

with a beam of cold neutrons. Pulses of neutrons at 60 Hz are generated by the

SNS [Spallation Neutron Source] from a 1 GeV proton beam colliding with a liquid

Mercury target. Spalled neutrons are then focused into an intense cold neutron

beam through the use of a liquid hydrogen moderator and a neutron guide making

the beam an effective tool as a low energy probe of the nuclear force. An essential

instrument for the experiment is the high efficiency spin flipper. This is a state-

of-the-art device based on the theory of double cosine-theta coils, and specifically

constructed to prevent interference with other instrumentation in the experiment.

Details of spin flipper design and integration are reported along with polarimetry and

polarimetry measurements of spin flipper efficiency and beam polarization. A target

yield analysis is also performed which precludes the construction of a yield profile

simulation.
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Chapter 1

Theoretical Background

A broad understanding of the n3He experiment requires essential background material

on the Hadronic Weak Interaction (HWI) and its specific application to the interaction

of a neutron with a 3He nucleus given by

~n+3He = 3H + p+ 764 keV (1.1)

In addition, the theory of Nuclear Magnetic Resonance is essential to the understand-

ing of neutron polarimetry and the operation of the spin flipper.

1.1 Theory of the Hadronic Weak Interaction

The theory of the nuclear force describes the interaction of neutrons and protons.

It is a complicated non-central force having tensor components with a dependence

on relative spin directions of the nucleons. The nuclear force is known to be highly

attractive in the range of about 1 fm, but becomes repulsive for distances . 0.7 fm.

Unlike gravitational and electromagnetic forces, it is also a short-range force having

a reach of about 2 fm. This value can be easily estimated using the energy-time

uncertainty principle where ∆E is the mass-energy of a pion.
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At low energies the theory of the nuclear force is constructed using non-strange

(∆S = 0) light virtual mesons π, ρ, and ω as mediators. Charged and neutral pions

are spinless mesons but the ρ and ω are vector particles which can transmit the spin-

dependence of the force. Emission amplitudes for these particles are well established

for the nuclear force along with values of the strong coupling constants gπ, gρ, and

gω.

A reaction like equation (1.1) is well characterized as a predominantly nuclear

interaction which conserves parity. However, it also is possible to measure small

deviations in the distribution of the decay particles which violate parity and are

therefore attributed to the presence of the weak force acting between the nucleons.

The effect is small and leads to a modified Hamiltonian

Htotal = Hpc + Hpv (1.2)

This Hamiltonian characterizes the parity violating nuclear force and leads to a theory

of the Hadronic Weak Interaction (HWI) [1, 2, 3] which takes into account both strong

and weak couplings simultaneously.

The first theory of the HWI, called the Meson Exchange Model, was introduced by

Desplanques, Donoghue, and Holstein [4] in 1980. In this model, the strong interaction

between hadrons is still mediated by light virtual mesons π, ρ, and ω, but figure 1.1

shows how a weak component is introduced by requiring one vertex to couple weakly.

This vertex can be viewed either as an emitter or an absorber of a weak boson. By

conservation of charge the neutral Z0 can only couple to a virtual ρ0 or ω0 meson

while the W± couples to π± and ρ± mesons. A matrix element associated with a

Feynman diagram such as figure 1.1 can be written

〈MN |Hpv|N〉 (1.3)
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where M is short for ‘meson’. Coupling both vertices with a purely charged or

neutral weak current is not realistically possible here in view of the short range

of the weak bosons (< 10−3fm) compared with the average separation between

individual nucleons—approximately three orders of magnitude larger. While the

Figure 1.1: The range of W± and Z0 bosons are too short for a direct interaction
between nucleons.

weak component represented by this diagram is 10−7 times smaller than its strong

counterpart, it is detectable experimentally as a result of the parity violation (PV)

property of the weak force.

The meson exchange model (DDH model) works best for few nucleon systems. In

general, observables are constructed from linear combinations of 6 unknown coupling

constants h1
π, h

0
ρ, h

1
ρ, h

2
ρ, h

0
ω, h

1
ω which must be determined from experiment. The

factors multiplying each of these couplings are numbers calculated from a Yukawa-like

parity violating potential and are specific to a given observable for an interaction like

(1.1). Values for these factors can be labelled a1
π, a

0
ρ, a

1
ρ, a

2
ρ, a

0
ω, a

1
ω so that the most

general equation for an observable A will be given by

A = a1
π · h1

π + a0
ρ · h0

ρ + a1
ρ · h1

ρ + a2
ρ · h2

ρ + a0
ω · h0

ω + a1
ω · h1

ω (1.4)

where the superscript indicates the isospin carried by the mediator.
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The observable for the n3He experiment is the PV asymmetry Ap of the outgoing

proton. All terms in (1.4) contribute to the interaction but only the first term along

with the two isospin-0 terms are significant. An approximation for Ap simplified from

the general expression given in [3] is

Ap = −0.1821 · h1
π − 0.1447 · h0

ρ − 0.1269 · h0
ω (1.5)

A precise value of the coupling constant h1
π will be determined by the recently

completed NPDGamma experiment. The overall goal of n3He is therefore an

assessment of the zero isospin couplings h0
ρ, and h0

ω of the DDH Model. Feynman

diagrams associated with all couplings in (1.5) are indicated by figures 1.2 and 1.3

for reference.

Figure 1.2: The weak vertex on the right side of each diagram is associated with the
meson coupling constant h1

π. The exchange of a πo is not possible here since neutral
spinless mesons do not contribute to parity violation.

Figure 1.3: The ρo and ωo are both vector particles. They carry no isospin and no
charge so both nucleons N connected to each vertex are the same.
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1.1.1 Determination of Asymmetries

The nuclear theory of the reaction (1.1) requires both PV and PC asymmetries

associated with the statistical distribution of protons. While the primary goal of

the n3He experiment is a determination of the PV (up-down) proton asymmetry,

the PC (left-right) asymmetry cannot be ignored since it is roughly the same order

of magnitude 10−7 and can destroy the PV measurement without proper alignment

of the experiment. Leading terms of the differential cross section inclusive of both

asymmetries can be written

dσ

dΩ
=

1

4π
[1 + εpc + εpv + · · · ] (1.6)

where the PV and PC asymmetries are given by

εpv = αpv〈σ〉 · kp εpc = αpc〈σ〉 · (kn × kp) (1.7)

and (αpv, αpc) are constants. The parity of each of these terms is easily demonstrated.

For both terms the spin angular momentum 〈σ〉 is a pseudovector which is even under

a parity transformation. However, both linear momentum vectors are polar vectors

which are odd under parity and this requires εpv to be parity odd while εpc is parity

even.

There are several ways to ensure that the asymmetries remain experimentally

separated. One possibility is to use longitudinally polarized neutrons. In this case,

under proper alignment, the parity conserving contribution vanishes for all neutrons

in the interaction region of the experiment. Unfortunately, variations in neutron

beam intensity have indicated that it is not practical to use longitudinally polarized

neutrons, so to avoid interference from the parity conserving term requires the neutron

spin to be orthogonal to the neutron direction to a high degree of precision. This

is possible from the observation that neutron spins will align adiabatically with the

magnetic guide field provided for the experiment. The goal is therefore the alignment

5



of the guide field perpendicular to the beam direction. For motion in the z-direction

one writes the neutron direction

kn = (εx, εy, 1)kn (1.8)

and then estimate tolerances for εx and εy which yield a value of the proton asymmetry

to within the required accuracy.

Parity Violating Asymmetry: In terms of the cross-section formula (1.6) the

value of Ap follows by choosing an appropriate coordinate system for which

εpv = Ap cos θ (1.9)

Possible values for Ap may be determined from DDH table VII which gives best

values and reasonable ranges for the coupling constants using Weinberg–Salaam model

parameters. Values in the table are given as fractions of the strong coupling constant

Table 1.1: Best values and reasonable ranges from the DDH paper

Coupling Constant Best Value Reasonable Range

h1
π 12 0→ 30

h0
ρ −30 −81→ 30

h0
ω −5 −27→ 15

gπ = 3.8× 10−8 and gives an estimate of the value of the proton asymmetry

Ap = 1.060× 10−7 (1.10)

with maximum and minimum values from the reasonable range estimates

−4.449× 10−7 ≤ Ap ≤ 5.756× 10−7 (1.11)
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Parity Conserving Asymmetry: Production data for the PC asymmetry was

taken in March and December 2015 by rotating the ion chamber 90 degrees in a

clockwise manner looking upstream with respect to the beam. Aproximately 1000

data runs were taken (at 7 minutes per run) in both cases which required about

120 hours of run time. The PC asymmetry is different than the PV asymmetry

and is a function of the neutron momentum kn. This means that the magnitude of

the asymmetry will depend on the neutron energy. This is important for the n3He

experiment which uses a distribution of cold neutron energies.

1.2 Nuclear Spins and Kinematics

The absorption and emission of radiation by nuclides in the presence of a typically

constant externally applied magnetic field is referred to as Nuclear Magnetic

Resonance (NMR). In general, a nucleus has an intrinsic angular momentum S along

with an associated nuclear magnetic moment µ related to S by the simple relation

µµµ = γSSS (1.12)

where γ is the gyromagnetic ratio. However, isotopes with even numbers of protons

and neutrons will not respond to nuclear magnetic resonance since pairs of nucleons

align in anti-parallel spin configurations leaving a total nuclear spin of zero.

For those nuclides with a non-zero spin, the energy of the nuclear magnetic

moment in an external field BBBo can be written

E = −µµµ ·BBBo (1.13)

A given nucleus with quantum number S has 2S + 1 possible energy states and a

transition between these states can be accomplished with an appropriately chosen

photon energy. The simplest example of NMR is for an isotope having a nuclear

7



spin S = 1/2. There are only two possible energy states with an energy difference

quantized along the z-axis given by

∆E = γ~Bo (1.14)

Excitations from the ground state energy can be induced through interaction with an

incoming resonant photon having a frequency ωL equal to the Larmor frequency of

the nuclide

ωL = γBo (1.15)

Two examples of two-state NMR isotopes are 3He and 3H which also have similar

spin properties since they are both composed of three spin-1/2 fermions—two of which

are identical. The Pauli exclusion principle rules both nuclei by requiring the spins

of the identical nucleons to align anti-parallel in a spin-0 configuration. The total

nuclear spin will then be determined solely by the odd fermion which is S = 1/2

qualifying both nuclei as two-state NMR emitters and absobers.

The gyromagnetic ratio for 3H is not important for the n3He experiment but a

fairly precise value for 3He can be determined from [5] and a knowledge of the proton

gyromagnetic ratio:

γ[He3] = −2.038024× 108 s−1T−1 (1.16)

An intrinsic magnetic moment can also be calculated for a free neutron and a free

proton which are both S = 1/2 fermions. Typically, these magnetic moments are

given in terms of the nuclear magneton and the spin g-factor:

µ = gµN where µN = 5.05078353(11)× 10−27 J/T (1.17)

Once again, the magnetic moment of the proton is not important for the n3He

experiment but a precise value for the neutron determined by Greene and Ramsey [6]
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is

µn = −1.91304211(88)µN (1.18)

A simple calculation then determines the neutron gyromagnetic ratio

γn = −1.83247165× 108 s−1T−1 (1.19)

1.2.1 Kinematics

The binding energy of the 3He nucleus is smaller then the 3H nucleus due to the

mutual electromagnetic repulsion of its two protons. Using MT for the mass of the

triton, formulas for the binding energy of both nuclei are

Eb[T ] = (Mp + 2Mn −MT )c2 (1.20)

Eb[He3] = (Mn + 2Mp −MHe3)c
2 (1.21)

The energy liberated by the reaction in equation (1.1) is easily determined by

calculating the difference in the two binding energies which is the same as the

difference in mass-energy of the particles on both sides of the reaction equation

K = (MHe3 +Mn −MT −Mp)c
2 = 764 keV (1.22)

This excess energy is kinetic energy shared by the outgoing triton and proton. The

portion of the kinetic energy shared by each particle follows by simple consideration of

energy and momentum conservation assuming the initial neutron and helium nucleus

are at rest:

KT =
MpK

Mp +MT

= 191.3 keV Kp =
MTK

Mp +MT

= 572.7 keV (1.23)

Practically speaking, the energy and momentum of the outgoing proton is 3 times

that of the triton.
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Chapter 2

Overview of Experiment

This chapter contains information regarding the production of neutrons by the SNS

and the configuration of the chopped beam used by the n3He experiment. A discussion

of the overall design of the experiment emphasizes individual components—mainly

the spin flipper, the ion chamber, the collimator, and the guide field.

2.1 Neutrons provided by the SNS

The Spallation Neutron Source (SNS) is designed to provide high intensity 60 Hz

pulses of neutrons. The source is a low duty factor proton beam at 1 GeV providing

an average proton current of approximately 1 mA which collides with a liquid Mercury

target. This translates into an incident proton power of about 1 MW.

Moderators: Each colliding proton can produce 20-30 neutrons having a range of

energies up to the incident energy of a proton. Most of these neutrons are far too

energetic to be used by FnPB and must be slowed by the presence of a moderator

[7, 8]. Of the several moderators provided by the SNS, the source of FnPB cold

neutrons is a cryogenic H2 moderator at 20 K—capable of producing a well defined

neutron flux emerging from its front face with a range of energies less than about

10 meV.
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Neutron Guide: The emerging flux consists of 2 × 1011 neutrons per second

travelling one meter to the entrance of a 14 m long neutron guide [9] with a

rectangular cross section measuring 12 cm high by 10 cm wide. The guide is a rather

complex structure having both straight and curved sections—all with various interior

supermirror coatings. It resides inside a vacuum tube and transports individual

neutron pulses through internal reflections on the supermirror walls. The high

reflectivity of the supermirror qualifies the guide as lossless. Figure 2.1 shows the

Figure 2.1: Plot showing measured and simulated neutron flux near the end of the
neutron guide. Figure is courtesy of the NPDGamma collaboration

wavelength spectrum of the unchopped neutron beam emerging from the end of the

guide. The shaded portions of the plot indicate those neutrons absorbed by two frame

definition choppers placed along the guide. The main purpose of the choppers is to

prevent frame overlap between two successive pulses of neutrons. The choppers rotate

in opposite directions and only transmit wavelengths in the range 2.5–6.5 Å through

pie-shaped openings. Absorption of the unwanted wavelengths is maximized with a

layer of 10B applied to the chopper surface facing the oncoming beam.
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M1 Beam Monitor: A measure of the chopped neutron beam is available from

the ‘M1’ beam monitor installed near the end of the guide. The M1 monitor is filled

with 4He and N2 gases and a small partial pressure of 3He which interacts with beam

as in equation (1.1). The interaction generates an electrical current proportional to

the beam intensity which can be amplified and viewed on the Data Acquistion (DAQ)

electronics. The amount of 3He in the monitor is deliberately chosen to be small for

minimal attenuation of the beam. Details are available in [10].

Figure 2.2 shows the signal on the M1 monitor versus time for a few neutron

pulses. Since the SNS is a pulsed source the intensity of neutrons in a pulse at time t

is proportional to the neutron wavelength with the shortest wavelengths occuring at

the front of each pulse. The complete M1 signal is recorded over the length of each

Figure 2.2: Neutron pulses measured by the M1 beam monitor and displayed by
the DAQ electronics as a function of time.

data run produced by the experiment. Cuts on the M1 monitor are an essential part

of data analysis to eliminate portions of data for any number of reasons including any

pulses with undesirable characteristics, or data runs taken with no beam present. The

M1 monitor also provides oversight of the SNS proton beam power since variability of

proton beam power is directly proportional to the recorded neutron beam intensity.
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Supermirror Polarizer: The neutron beam is polarized by a supermirror polarizer

(SMP) [11] inserted just before the end of the neutron guide. The polarizer is 40 cm

long and composed of 45 channels of glass panes coated with alternating layers of

nickel and silicon. The device operates as a spin filter by transmitting one neutron

polarization state through quasi-Bragg reflections from the Si, Ni multi-layer while

absorbing those neutrons of the opposite spin state.

The filtering property of the polarizer is facilitated by a large magnetic field of

350 Gauss produced by an array of permanent dipole magnets arranged in close

proximity to the glass panes. The field magnetizes the ferromagnetic nickel-coated

layers introducing a spin-dependent term to its index of refraction

n =

√
E − V[Ni] ± µµµ ·BBB

E
where E =

h2

2mλ2
(2.1)

while having no effect on the silicon which is nonmagnetic. This means that one

neutron spin state will see a lattice of alternating index of refraction allowing it to

reflect and continue towards the FnPB beamline while the opposite spin state will see

a relatively homogenous index of refraction allowing for transmission and absorption

into the glass substrate. Ultimately, the beam receives a polarization of about 93%

with a small dependence on wavelength at the expense of a reduction in neutron flux

by a factor of three. This includes the inevitable loss of a factor of two due to spin

selection.

State Vector for the Neutron Beam: The spins of the neutrons travelling along

the neutron guide from the moderator may be considered to be randomly polarized.

If they are incident on an ideal supermirror polarizer, it will act as perfect filter—

absorbing exactly one-half of the neutrons and transmitting the remaining half with

polarization Pn = ±1. In this case the neutron beam is a pure ensemble meaning that

every neutron in the beam can be described by the same state vector. For neutron
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spins filtered in the +y-direction, the state vector is

|ψ〉beam = |Sy+〉 (2.2)

Unfortunately, the limits of the supermirror polarizer require an accurate description

of the neutron beam to be written in terms of a mixed ensemble [12]. Specifically, for

a given wavelength, it is known that the fractional population of spins filtered by the

polarizer in the +y direction is Pn(λ) but the remaining fractional population is still

randomly polarized and can be analyzed in any arbitrary direction. If this portion

of the beam is analyzed along the x-direction then the neutron beam is correctly

characterized by the density operator

ρ = Pn|Sy+〉〈Sy+| +
1− Pn

2
|Sx+〉〈Sx+| +

1− Pn
2
|Sx−〉〈Sx−| (2.3)

Expectation values for the spin angular momentum of the neutron beam in all three

directions are then determined by

〈Sx〉 = Tr[ρSx] = 0 〈Sy〉 = Tr[ρSy] =
~
2
Pn 〈Sz〉 = Tr[ρSz] = 0 (2.4)

At 95% beam polarization, treating the beam as a pure ensemble is a reasonable

approximation; but it is important to clarify the true nature of the state vector for

any instance where it might be relevant.

2.2 Instrumentation

The overall design of the n3He experiment is illustrated in figure 2.3. Pulses of

neutrons emerging from the supermirror polarizer are spin aligned transverse to the

direction of motion. Individual pulses enter the spin flipper which is synchronized to

the arrival of each pulse and becomes energized to flip the spins of alternating pulses

with an efficiency approaching 100 percent. Neutrons emerging from the spin flipper
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interact with 3He in the ion chamber producing protons and tritons in accordance

with (1.1). The value of Ap can be extracted from measurements of electrical currents

induced in wire planes within the ion chamber.

Figure 2.3: Overall design of the n3He experiment. Complex data acquisition
electronics attached to the ion chamber are not shown here.

The success of this measurment hinges on the successful elimination of false

asymmetries to at least an order of magnitude less than δAp which can be achieved

through a precision alignment of the ion chamber with the transverse holding field.

Even with precise alignment however the success of the experiment relies on high

efficiency operation of the spin flipper and sound data acquisition electronics.

15



2.2.1 Spin Flipper

The spin flipper operates at radio frequency and is capable of flipping both

longitudinal and transverse neutron spin states using the physics of Spin Magnetic

Resonance (SMR). Pictures of the completed spin flipper are displayed in figure 2.4.

The interior of the device is composed of two semi-circular outer wire coils which

fit snugly around a central inner wire coil. The wires in each coil fit precisely into

complex groove patterns designed in accordance with the theory of double cosine

theta coils [13], and serve the purpose of producing a uniform transverse magnetic

field in the region inside the inner coil—with no external field. Each of the three coils

is independently wound and then all three coils are connected in series with the inner

cylinder in the middle. The series connection accommodates about 870 feet of 18

AWG solid aluminum wire. Aluminm wire is preferred over copper which is difficult

to form around the coils and can also be activated by the neutron beam.

Figure 2.4: Pictures of the n3He spin flipper. The inner cylinder is made from
12.5 inch PVC pipe and was machined by the UT machine shop. The outer return
coils are ABS plastic and were extruded using an SLA (Stereolithographic) 3D print
technology.
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The coils are enclosed by a 1/4 inch thick cylindrical aluminum shell and two

1/4 inch thick end plates with square insets machined to 0.040 inches to provide

thin windows for the neutron beam. The end plates are sealed to the cylinder with

RTV Silicon so that the device can be filled with 4He gas to prevent scattering of

internal neutrons during use. The housing on top of the shell accommodates a parallel

connection of two capacitors with a total capacitance of C = 17.7 nF—chosen to

match the natural frequency of the circuit with the Larmor frequency of neutrons in

the guide field. Both are Cornell Dubilier high voltage mica capacitors with individual

capacitances of 15.0 nF and 2.7 nF. The neccessity for more than one capacitor arises

from matters of cost and availability.

The space between the outer coils and the inner cylinder is filled with thin layers of

neoprene and polyethylene sheet and the entire coil system is wrapped under pressure

with heavy duty glass tape. The coil system is held in place inside the aluminum shell

with four padded coil support bars evenly spaced inside the perimeter of the aluminum

shell. Brass set screws are inserted from outside the aluminum shell and can be turned

with a hex wrench to apply pressure on the bars and the coil system.

A primary requirement for the spin flipper is to avoid the possibility of any

electromagnetic interference with DAQ electronics and the ion chamber. By design,

the interior RF magnetic field produced by the coils is self-contained with an added

layer of shielding provided by the thick aluminum shell. This is sufficient to ensure

that field lines do not leak outside the device. However, electrical isolation of the

spin flippers’ 120 Hz power source can also be established by a few precautionary

steps; for example, wrapping its aluminum mount with electrical tape before setting

the spin flipper on the mount.

2.2.2 Four Jaw Collimator

A critical piece of instrumentation for the n3He experiment is the four-jaw collimator

designed by the author and built by the UT-physics machine shop. The device is

17



nothing more than two vertical and two horizontal doors which slide on rails and can

Figure 2.5: CAD drawing of the four-jaw collimator. Torquoise covering on the
doors is 6Li neutron shield. Red strips are straightedge rulers with 1 mm rule
markings.

be set to any chosen position by tightening thumb screws. Each door is also covered

with two layers of 6Li along with a thin protruding Cadmium edge∗ which effectively

absorbs 100% of the beam except in the rectangular space between the doors.

The position of the doors is determined by rules on the side and on the top of the

device and can be set relative to the beam centroid to within about 0.1 mm. Settings

on the doors were unchanged throughout the course of the experiment, except for

polarimetry measurements which required closing the doors to a 3.5× 3.5 cm square

to absorb beam outside the radius of the analyzer cell. Following polarimetry the

doors could then be reset to their original positions.

∗ A cadmium edge protrudes slightly from the inside of each door to define a ‘sharp’ door edge
with respect to the neutron beam.
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2.2.3 Ion chamber

The ion chamber [14] serves as the beam target, the detector, and the beam monitor

during polarimetry measurements. A CAD drawing of the aluminum exterior is shown

on the left in figure 2.6 and a picture of the interior frame stack is shown on the right.

The frame stack is composed of Macor ceramic spacers designed to hold an array

Figure 2.6: Computer Aided Design drawing of the ion chamber and picture of the
interior Macor frame stack.

of 16 vertical signal wire planes of 9 wires each, which are sandwiched between 17

vertical High Voltage (HV) wire planes of 8 wires each. The high voltage is set at

350 volts and is maintained on all HV wire planes by two wires routed through high

voltage feedthroughs. A graphic showing the placement of all wires is illustrated by

figure 5.3 in chapter 5.

The 144 signal wires are grouped into four separate bundles of 36 wires each

and routed to the vacuum side of four signal wire feedthroughs. The air side of

the feedthroughs connect to pre-amplifier circuit boards which reside inside square

enclosures attached to ion chamber. The square enclosures can be seen in figure 2.7

resting around the perimeter of the ion chamber. Each enclosure receives a steady

flux of nitrogen gas serving as a coolant for the pre-amplifier circuit boards when they
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are in operation. The analog signals from the pre-amplifiers are sent to analog-to-

digital (ADC) converters allowing the resulting digital signal to be recieved by the

data acquisition computer.

Figure 2.7: Computer Aided Design drawing of the n3He experiment: Courtesy Eric
Plemons.

The chamber also contains two gas feedthrough valves allowing it to be evacuated

and then filled with 3He before data production begins. The density ρ of 3He gas in the

ion chamber is important for several reasons. First, the rate of neutrons interacting

with the gas will be proportional to ρ for densities which are not too large. However, ρ

is also important because it determines the mean free path of both the proton and the

triton emitted from the decaying nucleus. In addition, ρ also dictates the maximum

value of the high voltage potential which can be applied to the ion chamber since

higher densities can induce arcing between the wires.

For the n3He experiment important measurements on the ion chamber after filling

were the pressure and temperature of the gas:

P = 7.0 psi T = 21.33 deg C (2.5)

Using these data points it is not necessary to know the volume of the ion chamber to

determines the density of the gas inside. Its value can be determined from a variation
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of the ideal gas law in the form

P =
R

M
ρT (2.6)

where R is the universal gas constant and M is the molar mass of the isotope. For

3He—which is the only gas in the ion chamber—this value is determined from tables

to be M = 3.01603 grams per mole. Substituting values then determines the density

ρ = 5.945× 10−5 grams/cm3 (2.7)

Based on approximate dimensions of the ion chamber, one estimate indicates a total

mass of 3He in the ion chamber to be about 1 gram.

The operation of the ion chamber during data production is not complicated.

The polarized beam of neutrons interacts with 3He in the chamber producing decay

protons and tritons with ranges of about 1-10 cm. The decay particles are both

charged and can ionize other helium atoms in the chamber at the expense of their

own kinetic energy. The free electrons then generate small currents in the signal wires

which are amplified, digitized, and forwarded to the DAQ electronics.

2.2.4 Guide Field

The n3He experiment did not require the design and construction of a system of

wire coils to produce the guide field since a guide field from the previous experiment

(NPDGamma) was already installed and operational [15, 16]. A photograph of the

wire coils is shown in figure 2.8. The total interior magnetic field derives from 4

main horizontal racetrack coils with a set of four compensation coils placed around

the perimeter on the structural suppports. The two central ractrack coils are 18.25

inches apart and contain 18 wire windings each. Outer racetrack coils are placed

30.75 above and below adjacent inner coils and contains 39 wire windings each. All

four coils are connected in series to the main power supply. In addition, each of the

four coils also contain 12 wire windings connected in series to a separate auxiliary
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Figure 2.8: Guide field is generated from four main horizontal coils. The red lines
indicate the location of the beam right and back shim coils.

power supply. Finally, four individual compensation coils are connected to their own

power supplies and can be adjusted independently.

Table 2.1: Settings for all guide field powers supplies.

Power Supply Coil Current (amps)
Danfysik 896 Main 21.98
BK Precision Auxiliary 3.2
Agilent E3648A Left Shim 0.252
Agilent E3648A Right Shim 0.542
Agilent E3648A Back Shim 0.068
Agilent E3648A Front Shim 0.068

During data production all power supplies were run in current mode at the current

settings† shown in table 2.1. However, the auxiliary power supply recieved minor

adjustments during polarimetry to maximize spin flipper efficiency. The only other

exception was a time period between mid-March and Mid-April when the main power

†These settings were pre-determined by an alignment procedure ensuring that the resulting field
was perpendicular to gravity at the center of the ion chamber, see [17].
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supply (Danfysik 896) was set just over 22 amps to account for an abrupt drop in the

field of about 40 mG.

A set of two magnetometers installed just above the spin flipper are configured to

relay three axis magnetic field data every 12 second to the DAQ electronics. Plots

showing the trend of this field during the course of the experiment have been included

in figure A.1 of the appendix. The high current setting on the Danfysik in the

March/April time frame can be seen in the top plot and was corrected during April

polarimetry.
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Chapter 3

Spin Flipper

The spin flipper [18, 19] is a major component of the n3He experiment with a design

based on the theory of double cosine theta coils [13]. Two impressive properties of the

spin flipper are its highly uniform interior field, and its ability to flip either transverse

or longitudinally polarized neutrons. This chapter covers all the design features of

the spin flipper as well as integation of spin flipper electronics with other parts of the

experiment.

3.1 Fields of a Cosine-Theta Coil

A cosine-theta coil is a long hollow cylindrical coil of radius Rin having a spatially

uniform magnetic field in its interior transverse to the symmetry axis of the coil. For

the static problem, the field is determined by an applied surface current density

k(φ) = k sinφ ẑ̂ẑz (3.1)

which is the continuum limit of a large number of wires. The resulting field is most

easily determined using the theory of a magnetic scalar potential. In regions of zero
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current density the magnetic field adheres to the curl equation

∇×H = 0 (3.2)

implying a scalar potential from the relation H = −∇U .

For reference, transformation equations for the unit vectors in cartesian and polar

coordinates are:

r̂̂r̂r = cosφ x̂̂x̂x+ sinφ ŷ̂ŷy x̂̂x̂x = cosφ r̂̂r̂r − sinφ φ̂̂φ̂φ

φ̂̂φ̂φ = − sinφ x̂̂x̂x+ cosφ ŷ̂ŷy ŷ̂ŷy = sinφ r̂̂r̂r + cosφ φ̂̂φ̂φ

Potentials and fields associated with the coil can be divided into two regions: r ≤ Rin

and r > Rin. Since ∇ ·H=0, the general form of the scalar potential in either region

will be a solution to Laplace’s equation ∇2U = 0 and is of the general form

U(r, φ) = ao + bo ln r +
∞∑
n=0

(anr
n + bnr

−n)(cn cosnφ+ dn sinnφ) (3.3)

A unique solution is available through the application of the boundary condition

connecting the inside of the cylinder to the outside of the cylinder.

(Hin −Hout)× r̂̂r̂r = k r = Rin (3.4)

One finds interior and exterior solutions

Uin = −kr
2

cosφ Uout =
kR2

in

2r
cosφ (3.5)

and leading to magnetic fields given by

Hin =
k

2
[cosφ r̂̂r̂r − sinφ φ̂̂φ̂φ] Hout =

kR2
in

2r2
[cosφ r̂̂r̂r + sinφ φ̂̂φ̂φ] (3.6)
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Figure 3.1: Diagram showing magnetic field lines inside and outside the radius Rin

of the cosine-theta coil.

A graphical depiction of the magnetic fields is shown in figure 3.1.

The interior solution is the required constant magnetic field Hin = Hxx̂̂x̂x. The

exterior field might be referred to as a dipole field per unit length of z-axis and falling

off as r−2. It is a simple matter to verify that both fields have zero divergence and

also satisfy equation (3.4).

A real cosine-theta coil will be characterized by an integer N equal to the total

number of wires routed along the surface of the coil. The separation ∆x between

adjacent wires around the perimeter is constant and has a value

∆x =
4Rin

N
(3.7)

The magnetic field in the interior region follows by summing the contribution to the

field from each of the N wires. At the center of the cylinder the magnitude of the
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field can be written

Hx =
I

2πR2
in

N∑
i=1

‖yi‖ (3.8)

where ‖yi‖ is the vertical distance of each wire from the x-axis. Now consider the

quantity

Hx ·∆x =
I

2πR2
in

N/2∑
i=1

2‖yi‖ ·∆x

 (3.9)

But if N is large, the term in parenthesis is a good approximation to the area of the

circle, or πR2
in. Inserting equation (3.7) derives an approximate formula for Hx in

terms of the number N. More generally, the fundamental relation

4kRin = NI (3.10)

implies that the fields of a cosine theta coil composed of N wires around its

circumference (N/2 current loops) are

Hin =
NI

8Rin

[cosφ r̂̂r̂r − sinφ φ̂̂φ̂φ] Hout =
NIRin

8r2
[cosφ r̂̂r̂r + sinφ φ̂̂φ̂φ] (3.11)

3.2 Fields of a Double Cosine-theta Coil

A theory of a double cosine-theta coil follows from the introduction of a second

cosine-theta coil— concentric with the first coil and having a radius Rout. The fields

of this design are illustrated in figure 3.2 and show the primary purpose of ensuring

that the field external to both coils is zero. The neccessity of a vanishing external

field has already been alluded to in section 2.2.1. With this requirement the current

densities kin(φ) and kout(φ) will necessarily point in opposite directions along the

z-axis so that scalar potentials associated with each coil are:

27



Figure 3.2: External field lines of a double cosine-theta coil with the requirement
of no external field. Field lines from the inner coil get squeezed in between Rin and
Rout.

U1in = −kinr

2
cosφ r ≤ Rin U1out =

kinR
2
in

2r
cosφ r > Rin (3.12)

U2in =
koutr

2
cosφ r ≤ Rout U2out = −koutR

2
out

2r
cosφ r > Rout (3.13)

Cancellation of the field in the region r > Rout requires that current densities and

individual radii are connected by the formula

kinR
2
in = koutR

2
out (3.14)

In addition to this, the magnitude of the interior field will be

Hrf ≡
1

2
(kin − kout) > 0 (3.15)
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Both of the two previous equations can be written in terms of coils composed of Nin

and Nout wires. Specifically,

NinRin = NoutRout Hrf ≡
I

8

[
Nin

Rin

− Nout

Rout

]
(3.16)

Potentials for the coil in the two non-zero regions can now be written

Uin(r, φ) = −Hrfr cosφ r ≤ Rin

Uout(r, φ) =

[
R2

in

R2
out −R2

in

]
Hrf

[
r +

R2
out

r

]
cosφ Rin < r < Rout

As before, the auxillary field follows from H = −∇U . Inside the inner cylinder the

field is constant and transverse to the axis of the cylinder so that Hin = Hrfx̂̂x̂x. In the

outer region the field is more complicated and given by

Hout(r, φ) =
R2

in

R2
out −R2

in

Hrf

[
−
(

1− R2
out

r2

)
cosφ r̂̂r̂r +

(
1 +

R2
out

r2

)
sinφ φ̂̂φ̂φ

]
(3.17)

It is a simple matter to show that ∇ ·H = 0 in both regions. Current densities can

also be derived from equations similar to (3.4).

3.3 Surface Currents on a Finite Coil

The theory of a double cosine-theta coil presented so far assumes translational

invariance in the z-direction. However, a functioning coil will have a length of 1-2 feet

so it will be necessary to modify the design for some length zo without significantly

changing the fields—especially in the region r ≤ Rin. Realistically, this can be done

by an astute choice of electrical currents running along two cross-sections separated

by length zo.

Calculation of Surface Currents: The fields inside of the infinite double cosine-

theta coil can be used to determine surface current densities along two cross-sections of

29



Figure 3.3: Computer simulation of the x-component of H for the double cosine-
theta coil. The field is complicated between the coils but is constant in the interior
and zero for all points outside the coil.

the finite length coil. Before mapping these current densities it is useful to implement

equation (3.4) to calculate z-directed surface currents moving along Rin and Rout.

These currents are easily shown to be

Kin = (Hin −Hout)× r̂̂r̂r r=Rin
= kin sinφ ẑ̂ẑz (3.18a)

Kout = −Hout × r̂̂r̂r r=Rout = −kout sinφ ẑ̂ẑz (3.18b)

where the two surface currents are given by

kin =
2R2

out

R2
out −R2

in

Hrf kout =
2R2

in

R2
out −R2

in

Hrf (3.19)

These two formulas can also be derived by inverting equations (3.14) and (3.15).

Equations for current densities moving along a given cross-section of a finite coil

can be derived by forming the cross-product of a unit surface vector with appropriate
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magnetic field vectors. For the region r ≤ Rin write

K< = Hin × ẑ̂ẑz = −Hrf ŷ̂ŷy (3.20)

Calculation of the current density between Rin and Rout follows in a similar manner

by crossing ẑ̂ẑz into equation (3.17):

K> =
R2

in

R2
out −R2

in

Hrf

[
1 +

R2
out

r2

]
sinφ r̂̂r̂r +

R2
in

R2
out −R2

in

Hrf

[
1− R2

out

r2

]
cosφ φ̂̂φ̂φ (3.21)

Evaluating this current density at Rout shows that the component along the direction

φ̂̂φ̂φ vanishes. Meanwhile the magnitude of the component along r̂̂r̂r becomes identical

to Kout. For convenience figure 3.4 shows a schematic of the surface currents moving

along a cross-section. To evaluate Current densities at the opposing face it is only

Figure 3.4: Blue arrows indicate the flow of current along an endface of a double
cosine-theta coil. Black circles define the radii Rin and Rout.

required to reverse the direciton of the unit surface vector which changes the sign of

K< and K>. All the blue arrows in figure 3.4 are then reversed.
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Total Currents in the Coil: Kirchoff’s laws and conservation of current through-

out the double cosine-theta coil can be verified by integrating current densities over

selected boundaries at an endface. The entire solution to the problem can be reduced

to calculations over a single quadrant of the coil so the schematic at the bottom left

in figure 3.4 has been included for the purpose of displaying integration boundaries.

In general, for any given boundary, the total current follows by integrating over a line

perpendicular to the direction of the current using the formula

I =

∫
K · dl⊥ (3.22)

First define total currents running prallel to the z-axis along Rin and Rout:

Iin ≡ Current flowing into endface at QP (3.23)

Iout ≡ Current flowing out of endface at NO (3.24)

These quantities can be determined using the current densities Kin and Kout along

with the differential line element dl⊥ = Rdφ ẑ̂ẑz. The elementary integrals are:

Iin =
2R2

outRin

R2
out −R2

in

Hrf Iout =
2R2

inRout

R2
out −R2

in

Hrf (3.25)

The current Iin arriving at QP divides into a current which flows down the endface

for all r < Rin and a current flowing across QP . Define

IDN ≡ Current flowing down endface from QP (3.26)

IQP ≡ Current flowing across QP (3.27)

which can be determined using current densities K< and K> producing the results

IDN = HrfRin IQP =
R3

in

R2
out −R2

in

[
1 +

R2
out

R2
in

]
Hrf (3.28)
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The first Kirchoff equation is easily verified to be

Iin = IQP + IDN (3.29)

The second Kirchoff equation can be derived by showing the current flowing across

QP into the interior region of the closed curve is equal to the current flowing out

across the boundariy NO plus whatever current is flowing across PO. No calculation

is necessary for QN since current is everywhere parallel to this boundary. Define

Figure 3.5: Picture and Schematic showing grooves for wire placement on a double
cosine-theta coil

INO ≡ Current flowing out through NO (3.30)

IPO ≡ Current flowing out through PO (3.31)
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Both results here follow by integrations over K> using appropriate integration limits.

Results are

INO =
2R2

inRout

R2
out −R2

in

Hrf IPO =
RinHrf

R2
out −R2

in

[
R2

out − 2RoutRin +R2
in

]
(3.32)

and the second Kirchoff equation is

IQP = Iout + IPO (3.33)

Surface Currents on the n3He Spin Flipper: The spin flipper for the n3He

experiment is constructed with Nin = 320 parallel wires around its circumference at

r = Rin. The current Iin is determined from 80 wires of which 16 are routed downward

along the inner cylinder implying

IQP = 4 · IDN (3.34)

This information determines all other currents in the coil by constraining the inner

and outer radius through the relation

Rout =

√
5

3
Rin (3.35)

Relative values of the individual currents are shown in Table 3.1. Unfortunately the

second Kirchoff relation in (3.33) cannot be satisfied exactly because INO and IPO are

required to share 64 wires. The best result allocates 2 wires for IPO and shows that

INO = 24.217Hrf and IPO = 0.781Hrf (3.36)

Percent differences with ideal values give

∆NO = 0.046 % and ∆PO = 1.64 % (3.37)
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Table 3.1: Surface currents on a double cosine-theta coil. The last column is
determined from the initial value Rin = 6.320 inches.

No. Current Value 1 Value 2
1 Iout 3RoutHrf 24.447Hrf

2 Iin 5RinHrf 31.600Hrf

3 IQP 4RinHrf 25.280Hrf

4 INO 3RoutHrf 24.447Hrf

5 IPO 0.127RinHrf 0.803Hrf

6 IDN RinHrf 6.320Hrf

Since the two wires composing IPO are routed back to the Rin this means that the

outer coil is a cosine-theta coil designed for 62 wires per quadrant.

3.4 Inductance of Cosine-Theta Coils

Calculations of the fields produced by cosine-theta coils presented thus far assume

input currents and current densities which do not change with time. However, the

spin flipper will be driven at an RF frequency transforming its interior coils into

and LR circuit, and this motivates the need for an understanding of coil inductance.

For the theoretical infinite length coils, the meaningful quantity to calculate is the

inductance per unit length; but a more realistic problem of a coil with length zo

provides only minor additional complications in the calculation.

Indutance of a Cosine-Theta Coil: For a coil composed of N wires there are

N/2 current loops and the total flux through the coil is given by

Φ =

N/2∑
i=1

Φi = LI (3.38)
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The flux through each current loop is given by the surface integral

Φi =

∫
s

B · dSi (3.39)

but the magnetic field in the interior region is constant and points in the same

direction as dS, so

Φi = Bx · Si = µoHx · Si (3.40)

where Si is the area enclosed by each loop. The total inductance is therefore

Φ = µoHx

N/2∑
i=1

Si (3.41)

and is proportional to the total area enclosed by the individual wire loops. Consider

instead the quantity

Φ ·∆x = LI ·∆x = µoHxzo

N/2∑
i=1

2‖yi‖ ·∆x

 (3.42)

which can be compared to equation (3.9). Again, the value in parentheses

approximates the area of the circle of radius Rin. Employing equation (3.7) the

inductance of the cosine-theta coil is

L =
µoπzo

32
N2 (3.43)

This same result also follows from a determination of the total energy stored in the

magnetic field. The energy inside the coil follows immediately as

Ein =
µoπzo

2

[
NI

8

]2

(3.44)
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The stored energy outside the coil gives the same result. Now write

Etotal = 2Ein =
1

2
LI2 (3.45)

and solve for the inductance.

Inductance of a Double Cosine-Theta Coil: The inductance of a double cosine-

theta coil is a more difficult problem to address then a cosine-theta coil. For

definiteness it will be assumed here that a double cosine-theta coil is defined by

the requirement of a zero external field everywhere. This is an important constraint

on the radii and the number of wires, and simplifies the calculation.

The total magnetic field energy in the coil in each of two regions is given by

E =
µo
2

∫
|H|2dv (3.46)

In the region r ≤ Rin the answer is almost trivial since the field is constant. One

finds

Ein =
µo
2
H2

rfπR
2
inzo (3.47)

In the region Rin < r < Rout the integral is somewhat more complicated with the

result

Eout =
µoπH

2
rfzo

2

[
R2

in

R2
out −R2

in

]2

·
[
R4

out

R2
in

−R2
in

]
(3.48)

Now use

Ein + Eout =
1

2
LI2 (3.49)

and solve the for the inductance.

L = µoπR
2
inzo ·

H2
rf

I2

[
2R2

out

R2
out −R2

in

]
(3.50)

To complete the calculation it is necessary to insert both equations in (3.16) so that

L appears in terms of geometric quantities only. A symmetric form of the final result
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is

L =
µoπzo

32
NinNout

[
Rout

Rin

− Rin

Rout

]
(3.51)

Inductance of the n3He Double Cosine-Theta Coil: The overall design

initiative for the n3He double cosine-theta coil is to have every 5th wire routed

along the perimeter at Rin to be routed along the end faces of the inner cylinder.

This condition locks in the ratio of the two radii and the two numbers Nin and Nout

through the relation

Rout

Rin

=

√
5

3
=

Nin

Nout

(3.52)

Actual values for these quantities along with the coil length are given in table 3.2.

Inserting values into equation (3.51), gives an inductance of

L = 2.01265 mH (3.53)

This value is in excellent agreement with experimentally measured values obtained

from resonance curves using a known capacitance.

Table 3.2: Specifications for the n3He double cosine-theta coil

No. Length

Nin = 320 Rin = 6.320 in.
Nout = 248 Rout = 8.159 in.

zo = 15.60 in.

Independent Evaluation of L: Inductance of the double cosine-theta coil using

specifications in Table 3.2 can also be deterimined from a good understanding of the

derivation for the cosine-theta coil given previously. The total flux through the inner

cylinder is

Φ = µoHrf

N/2∑
i=1

Si (3.54)
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which is identical to equation (3.41) except that Hx has been replaced by Hrf . Solving

for the quantity Lin in the same manner gives

Lin =
µoHrfπR

2
inzo

I ·∆x
(3.55)

But equation (3.52) can be inserted into equation (3.16) to show that

Hrf

I
=

1

∆x
=

N

4Rin

(3.56)

where N = 64 for the inner cylinder. The final result is

Lin =
µoπzoN

2

16
(3.57)

which is double the result for a cosine-theta coil. To determine the contribution from

outer cylinder loops it is only necessary to note that the total flux through the top

half of the inner cylinder runs entirely through the top half of the outer cylinder. The

only difference is that this flux traverses four times as many wire loops. This means

that Lout = 4 · Lin. The total inductance for the n3He coil is therefore

L =
5

16
µoπzoN

2 (3.58)

This is a useful formula for L given exclusively in terms of the number of wires routed

along the inner cylinder.

3.5 Spin Flipper and Spin Magnetic Resonance

The rotation of neutron spins inside the spin flipper is easily described by the

classic two-state problem of Spin Magnetic Resonance [12]. Spins emerging from the

supermirror polarizer are initially polarized along the direction of the guide field Bo.

Figure 3.6 shows these vectors along with the transverse field Brf produced by the
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spin flipper. When the spin flipper is off the initial quantum mechanical Hamiltonian

Figure 3.6: Vectors for the SMR problem with Brf oscillating in the horizontal
plane. The direction of the beam should be along the +z axis but is the direction of
Bo for the purpose of solving the SMR problem.

for the neutrons interacting with the guide field is approximately represented by the

two-state matrix

H =

~ωL2
0

0 −~ωL
2

 where ωL = γnBo (3.59)

For neutrons inside an energized spin flipper, the magnetic moment µn interacts with

the total field producing a small change to the original Hamiltonian ∆H. This total

field is

BBB = Boẑ̂ẑz +Brf cosωtx̂̂x̂x (3.60)

but to apply the RF portion for an SMR calculation requires that it be written as

the sum of two fields which rotate in opposite directions [20]

BBBrf =
Brf

2
(cosωtx̂̂x̂x+ sinωtŷ̂ŷy) +

Brf

2
(cosωtx̂̂x̂x− sinωtŷ̂ŷy) (3.61)

The clockwise component can be associated with a positive frequency ω while the

counter-clockwise component follows from the replacement ω → −ω. This component

is highly supressed by the SMR calculation and can be ignored. The contributing

40



component then allows ∆H to be written

∆H = γnSSS ·BBBrf =

 0 ~ωF eiωt

~ωF e−iωt 0

 where ωF ≡
γnBrf

4
(3.62)

The perturbed two-state Hamiltonian inside the spin flipper is then

H + ∆H =
~
2


ωL 2ωF e

iωt

2ωF e
−iωt −ωL

 (3.63)

The solution follows provided that ωF/ωL << 1. Its value is about 1/40 for n3He

experiment since the amplitude of the RF field is near 1 G. If the initial quantum wave

function is a pure eigenstate of the unperturbed Hamiltonian then the probability of

finding neutrons in a given state derives from the Rabi formula

P (t) =
4ω2

F

4ω2
F + (ωL − ωrf )2

sin2

[√
ω2
F +

(ωL − ωrf )2

4
t

]
(3.64)

To rotate neutron spins by 180 degres with a probability approaching 1, it is necessary

to drive the spin flipper at resonance. At this frequency, the Rabi formula simplifies

to

P (ωrf → ωL) = sin2 ωF t (3.65)

For neutrons of specific energy E, this means we choose ωF based on the total time

δt these neutrons are exposed to the RF field. The angular frequency must be

ωF = π/2δt (3.66)

to ensure P → 1 and an appropriate equation for the RF field will be

Brf (t) =
4ωF
γn
· eiωLt (3.67)
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Table 3.3: Selected times δt for neutrons in the spin flipper.

No. λ velocity(vn) δt

1 6.5Å 608.620 m/s 0.6510 ms
2 5.0Å 791.205 m/s 0.5008 ms
3 3.5Å 1,130.294 m/s 0.3505 ms
4 2.5Å 1,582.411 m/s 0.2504 ms

SMR for a Wavelength Spectrum: The flux of neutrons through the spin flipper

is actually composed of a distribution of de Broglie wavelengths in the approximate

range 2.5A ≤ λ ≤ 6.5A. For reference, Table 3.3 gives an indication of selected

neutron velocities in this range along with the total time spent inside the spin flipper.

The length of the spin flipper is zo = 39.62 cm and this means that ωF will depend

on the wavelength of the neutron according to

ωF =
πh

2mzoλ
(3.68)

For a given pulse of neutrons, the amplitude of the RF field inside the spin flipper

will therefore be required to decrease with a 1/t dependence over a time interval ∆t

and having the general form

Brf (t) =

[
Bmax

1 + αt

]
eiωLt (3.69)

where α is a constant. An illustration of the RF field envelope provided by the spin

flipper is shown in Figure 3.7. The spin flipper energizes at time ti simultaneous with

the arrival of the front of the pulse and then de-energizes at a time tf later. The SNS

provides pulses of neutrons at 60 Hz implying that the width of a pulse is

∆T = tf − ti = 16.667 ms (3.70)

The fastest neutrons will be located at the front of the pulse and receive that portion

of the RF field with the largest amplitude. In contrast, the slowest neutrons are at
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Figure 3.7: Magnetic field envelope provided to the spin flipper. The region of zero
field between the pulses transmits neutrons without flipped spins.

the back of the pulse and receive the smallest field amplitude. The total time spent

by any neutron in the spin flipper is δtλ which is much smaller than the width of the

pulse.

3.6 Spin Flipper as an RCL Circuit

The double cosine-theta coil inside the spin flipper has an inductance L determined

by the coil geometry, and resistance R determined by the total length of wire in the

coil. With a negligible capacitance it will behave as an LR circuit when driven at the

neutron Larmor frequency. Since an LR circuit behaves as a low-pass filter this implies

that an exceedingly large voltage will be required to produce currents necessary to

flip the neutron spins. To minimize voltage requirements it will be sensible to include

an external capacitance so that the coil circuit resonates near the Larmor frequency

as an RCL circuit. A schematic of this circuit is shown in figure 3.8. While the
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Figure 3.8: Circuit Diagram for the spin flipper coils with external capacitor and
sinusoidal input.

capacitor is an independent circuit element, the red dashed line indicates that neither

the resistance nor the inductance can be removed independently of each other.

Values for Resistance, Capacitance, and Inductance: In actual fact, the value

chosen for the capacitance dictates not only the resonant frequency of the RCL circuit,

but also the magnitude of the guide field Bo which is proportional to the Larmor

frequency of the neutrons. Furthermore, any value of capacitance can be selected in

a reasonable range to determine a guide field of approximately 8-12 Gauss. The value

chosen for the n3He experiment is C = 17.70 nF leading to

ωL =
1√
LC
∼ 1.68× 105 s−1 Bo =

ωL
γn
∼ 9.15 G (3.71)

The capacitance is determined by the manufacturer and is not an experimentally

determined quantity. However, the resonant frequency of the circuit is measured quite

accurately in equation (3.73) so that an experimental value of the coil inductance is

possible:

L = 1/ω2
LC = 2.014mH (3.72)

44



This differs from the theoretical value predicted by equation (3.58) by about 0.6

percent suggesting that the value of the capacitance is also quite accurate. The

only other information needed is the resistance R of the coils which can either be

determined by the 870 feet of wire used to make the coils and the resistivity of

aluminum, or by a simple measurement using an ohm-meter. For reference, values

for all circuit elements are summarized in Table 3.4.

Table 3.4: Values of spin flipper resistance, inductance, capacitance. Resistnce is
determined with an ohm-meter.

R C L
9.11 Ω 17.70 nF 2.01 mH

Resonance Curve: A precise measurement of the spin flipper resonant frequency

comes from the resonance curve shown in figure 3.9. Individual points on this curve

Figure 3.9: Resonance curve for the spin flipper

are made available using a small wire coil (probe) rigidly placed near the center of the

spin flipper and connected to an SR860 lock-in amplifier [21]. When the frequency on
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the lock-in amplifier is matched with a driving frequency applied to the spin flipper

a voltage is produced by the probe indicative of magnetic flux enclosed by the probe.

This voltage is the vertical axis in figure 3.9 and the curve V(f) has characteristics

Vmax = 2.916 mV @ f = 26.655± 0.005kHz FWHM ≈ 1.4kHz (3.73)

The Q-value is an important indicator for an RCL circuit determined by the

resonace curve from the quantity f/∆f where ∆f is half of the FWHM. This value

also follows from the definition

Q = ωL ·
Total stored energy

Average power supplied at resonance
(3.74)

For the spin flipper:

Q =
ωLL

R
≈ 37.2 (3.75)

Since Q� 1 this qualifies the spin flipper as an underdamped oscillator.

Steady State Power Formula: With an applied external voltage V (t) = Voe
iωt,

the steady state differential equation for the spin flipper circuit can be written in

terms of the charge q(t) on the capacitor:

L
d2q

dt2
+R

dq

dt
+
q

C
= Voe

iωt (3.76)

The real part of this solution and its first time derivative can be written

q(t) =
Vo

ω
[
R2 + (ωL− 1

ωC
)2
]1/2 · cos(ωt+ φ) (3.77)

I(t) = − Vo[
R2 + (ωL− 1

ωC
)2
]1/2 · sin(ωt+ φ) (3.78)
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where the phase is given by

φ = arctan

[
R

ωL− 1
ωC

]
(3.79)

At resonance, the phase angle is π/2 so that the charge and the current are both out

of phase with the driving voltage. The voltage across each circuit element can also

be calculated at resonance:

VC = − Vo
RωC

sinωt VR = −Vo cosωt VL =
ωVoL

R
sinωt (3.80)

As an example, a 5Å neutron will require about 5 volts and with this value the signal

amplitude across the capacitor and inductor are VC = −VL = 185 volts.

The average power supplied to the circuit evaluated over one cycle is given by

Pavg =
V 2
o R/2

R2 + (ωL− 1
ωC

)2
(3.81)

This can also be evaluated at resonance simplifying to

Pavg =
V 2
o

2R
(3.82)

This formula applies only to sinusoidal input voltages.

Power Requirements for the n3He experiment: A more meaningful calculation

for the n3He experiment is a determination of the supplied power over a single pulse

interval having a voltage (or current) envelope as in figure 3.7. The RF magnetic field

amplitude can be determined as a function of wavelength from equation (3.67) and

the current amplitude is related to the magnetic field amplitude by equation (3.16)

or

Brf = 99.59 · µo I (units of Tesla) (3.83)
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Using a wavelength spectrum 2.8 ≤ I ≤ 6.5 Å and T = 16.667 ms, an accurate

formula for the current amplitude in Amps is

I(t) =
12.352

12.605 + t
where 0 ≤ t ≤ T (3.84)

The power delivered for a single pulse is then

Pavg =
R

2T

∫ T

0

I2(t)dt (3.85)

This is easily integrated producing the result Pavg ≈ 1.88 Watts.

3.7 Field Measurements inside the Spin Flipper

The double cosine-theta coil is specifically designed to have a uniform field in the

interior region of the inner cylinder. Before installation of the spin flipper it is

mandatory to perform at least some measurements of the field in this region to verify

that the coil has been properly designed and wrapped.

Field measurements are possible by first energizing the spin flipper with the

resonant frequency RF signal. The field can then be measured by inserting a probe

attached to a lock-in amplifier. The probe is made with a thin wire wrapped at the

end as a 10 times, 1 cm diameter coil. Tuning the lock-in amplifier to the RF signal

then produces a voltage reading. This reading can be maximized by rotating the

probe so that the axis of the 1 cm coil points along the direction of the magnetic

field. Voltages are plotted in figure 3.10 from two randomly chosen entry points into

the inner cylinder. The signal ramps by a factor of 100 over a distance of about 2 cm

outside the coil, and then quickly levels off to its constant value near V = 0.22 volts

inside the coil. This voltage can be converted to the amplitude Brf of the oscillating

magnetic field using Faraday’s law:

Brf =
V

Nωπr2
(3.86)
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Figure 3.10: Field measurements inside the spin flipper

Here ω is the frequency of the input resonant signal, N = 10, and r is the probe

radius. For reference, values of data points are included in the Appendix, tables A.1

and A.2.

3.8 Integration with DAQ Electronics

Following installation of the spin flipper and proper alignment with the neutron beam,

it will be necessary to provide necessary electronics for generation of the appropriate

waveform similar to the illustration in figure 3.7. In addition, a copy of the waveform

must be routed to the data acquisition computer as a continous indicator that the

spin flipper is operational during data production.

3.8.1 Circuit Diagram

A circuit diagram for the spin flipper electronics is shown in figure 3.11. The source

waveform is generated by a Tektronix AWG-3022B function generator [22]. A cable

routing the waveform to a Crown D-75 audio amplifier [23] features a coaxial connector

at the output of the function generator connecting to an XLR/phone input connector

at the audio amplifier. The power output capabilities of the amplifier far outweigh

the requirements of the spin flipper so only one of its two channels is needed to
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Figure 3.11: Diagram showing integration of spin flipper circuit with DAQ
Electronics.

energize the spin flipper. During operation its voltage output is about 10-15 times

the input voltage from the function generator. For consistency, the volume knob on

the amplifier is set to a default maximum value and this allows the strength of the

waveform sent to the spin flipper to be controlled exclusively and precisely by the

function generator which can increment its output voltage by 1 millivolt or less.

Both the function generator and the DAQ electronics receive a trigger from the

SNS 60 Hz TTL logic signal synchronized to the production of individual pulses of

neutrons. Since the spin flipper is only energized for alternating pulses of neutrons, it

is necessary to transform the 60 Hz signal allowing the function generator to trigger

at only 30 Hz.

A wide band current transformer connected to the output of the amplifier relays

a replica of the amplifier output waveform to the DAQ. The transformer is rated to

generate a voltage of 0.1 volt per Ampere but the actual signal is less than this based

on the high frequency of the amplifier output waveform at 26.65 kHz. For this reason

the transformer signal receives a 10 times voltage gain from an SR-560 pre-amplifier

[24] before being received on DAQ channel 30. The waveform is recorded by the
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Figure 3.12: Magnetic field envelope for the spin flipper shown on an oscilliscope.
The yellow signal on ch:1 is from the waveform generator. The blue signal on ch:2
has been amplified by the audio amplifier.

DAQ for each data run for confirmation that the spin flipper is operational during

the course of data production.

3.8.2 Programmed Signal for the Function Generator

ArbExpress Ver3.1 is an arbitrary waveform editing tool from Tektronix. The software

package is used to program a digital sinusoidal waveform with an amplitude that

decreases as 1/t. The programmed signal features N = 444.25 oscillations covering

the time interval ∆T = 16.6667 ms giving a frequency N/∆T very close to the

required Larmor frequency of neutrons in the guide field. The digital waveform is

constructed using 65,000 equally spaced voltage points of a possible 216 points allowed

by the function generator. This means each sinusoidal oscillation is composed of

approximately 146 discrete voltage points separated by about 0.25 µs. The completed

waveform (shown on the oscilloscope in figure 3.12) is uploaded to the AFG-3022B

using the USB port and routed to the audio amplifier by the TTL logic signal at 30

Hz.
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Maximizing Spin Flipper Efficiency: An outstanding issue is the ratio of the

signal amplitudes a and b at the beginning and the end of the pulse outputed by the

function generator. The audio amplifier will amplify both ends of the input pulse by

the same amount leaving the ratio a/b unchanged. However, the programmed value

of a/b determines the amplitude ratio Bmax/Bmin inside the spin flipper and should

be chosen to maxmimize the efficiency of the spin flipper. The optimal value for a/b

Figure 3.13: Plots associated with changes in the ratio a/b.

can be determined by preparing programmed wave forms using ArbExrpess software

with slightly differing values of a/b. Figure 3.13 shows the calculated Spin Flip Ratio

(SFR) from polarimetry measurements plotted against a/b for six different uploaded

waveforms using an output function generator voltage of Va = 486 mV. Maximizing

spin flipper efficiency entails acquiring data at different voltages Va for each chosen

ratio. This generates a 2D max/min problem which can simultaneously locate an

optimal Va and a/b. Unfortunately, this technique was not used to maxmimize

efficiency since Va = 486 mV and a/b = 2.370 were initially chosen which provided

satisfactory results. Any changes to initial settings were thought to be possibly

problematic.
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Spin Flipper Current Signal Read by the DAQ: The voltage rise time for the

spin flipper circuit is on the order of a few µs. The waveform sent by the current

transformer to the DAQ is determined by the current flowing in the signal wires sent

to the spin flipper. The shape of this curve recorded by the DAQ is shown in 3.14

for two consecutive pulses. While the voltage rise times (slew rate) are very short,

the current neccessarily lags the voltage and distorts the signal at both the beginning

and the end of the pulse. The vertical line at the time 1624 occurs at 16.667 ms and

Figure 3.14: DAQ display of the current envelope sent to the spin flipper.

represents the end of a neutron pulse DAQ measurement followed by the beginning

of the next measurement. Presence of the non-zero signal crossing into the region of

the first pulse is based on ensuring that the rise time of the current does not interfere

with the spin flipper signal required at the start of the second pulse.
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Chapter 4

Neutron Polarimetry

Polarimetry measurements on the neutron beam are an essential part of the n3He

experiment for several reasons: The statistical evaluation of the physics asymmetry

Ap depends on the average beam polarization 〈Pn〉, the average spin flipper efficiency

〈εsf〉, and the observed asymmetry Aobs through the relation

Ap =
Aobs

〈Pn〉 · 〈εsf〉
(4.1)

If Ap is to be measured with a precision of 10−8, then the reasonable range estimates

in equation (1.11) imply a statistical uncertainty in the neighborhood of 2%. This

means that measurements of beam polarization and spin flipper efficiency should show

a variability which is less than this.

Neutron polarimetry [25, 26, 27] was performed on a (roughly) monthly basis

during data production. Calculated average values of beam polarization 〈Pn(λ)〉,

Spin Flipper efficiency 〈εsf (λ)〉, and the room background at each wavelength are

given in Appendix A along with standard deviations. Averaging over all wavelengths

leads to the results

〈Pn〉 = 0.936± 0.0018 〈εsf〉 = 0.9979± .00091 (4.2)
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Errors in both quoted values are well within the range required by the experiment

and the value 〈εsf〉 can be removed from (4.1) since its value is so close to one.

4.1 Polarizing the Analyzer Cell

Techniques of NMR are vital for polarizing an analyzer cell for neutron polarimetry

measurements during the n3He experiment. An analyzer cell [28] can also be referred

to as a spin filter or a Helium-3 cell. At room temperature the cell used for the n3He

experiment contains 3He at about 1.3 atmospheres. It also contains a significant

portion of Nitrogen gas (N2) along with small amounts of the alkali metals Rubidium

(Rb) and Potassim (K). This combination of elements allow the cell to be polarized

using the technique of Spin Exchange Optical Pumping (SEOP).

To initiate optical pumping of the alkali metals, the cell is placed in a uniform

magnetic field (holding field) of 10-12 Gauss and heated in a convection oven to 195

degrees celsius vaporizing both metals. Infra-red light from two high intensity lasers

passes through 1/4-wave plates becoming circularly polarized before falling on the

heated cell. The lasers emit a wide bandwith covering the D1 and D2 wavelengths of

Rb and K given by

Rb −→ D1 : 795nm D2 : 780nm

K −→ D1 : 770nm D2 : 760nm

and allowing for excitation of each alkali metals’ valence electron. The energy level

diagram in figure 4.1 borrowed from [28] shows the interaction of the polarized light

with the alkali metals. The S1/2 valence electrons contain ms = ±1/2 substates at

slightly different energies. The incident polarized light can only be absorbed by the

ms = −1/2 substate which briefly excites electrons into P-orbitals. This state can

decay to either of the two S1/2 substates but since the ms = −1/2 state is being

continuously pumped, the alkali vapor will have an excess of atoms characterized by
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Figure 4.1: Schematic showing the polarization of an alkali metal (Rb or K) by
optical pumping.

ms = 1/2 and therefore a net polarization

PA = ρA(+1
2
)− ρA(−1

2
) (4.3)

where ρA(±1
2
) are the occupation probabilities in each substate. Without N2 gas in

the cell the decay of the P1/2 substate proceeds to each S1/2 state with probabilities

(2
3
, 1

3
). On the other hand, a partial pressure of N2 gas about one-tenth the partial

pressure of 3He will induce collisional mixing between the P1/2 states leading to equal

probability decays (1
2
, 1

2
) to the S1/2 states producing a higher alkali polarization.

The resulting polarized alkali vapor can then polarize the Helium gas during

hyperfine spin exchange collisions between valence electrons and the 3He nuclei. The

spin exchange rate is given by γSE —a number proportional to the number density of

the alkali vapor in the cell. It is a relatively small number which can be compared to

the relaxation rate Γ of the polarized 3He in the absence of optical pumping. When

γSE > Γ, these two quantities determine the polarization P of the 3He as function of
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time

P (t) =
γSEPA

Γ + γSE

[
1− e−(Γ+γSE)t

]
(4.4)

In the special case of γSE � Γ the maximum achievable polarization of the cell will

be governed exclusively by the polarization of the alkali metal.

Free Induction Decay: Indirect measurements of cell polarization during optical

pumping can be obtained using the NMR technique of Free Induction Decay (FID)

[25, 26]. The technique uses a small coil of wire fastened to the top of the cell—

and perpendicular to the direction of the holding field—which can receive a short

duration input RF voltage at frequency ωin displaced by approximately 100 Hz from

the Larmor frequency of the 3He nuclei. The Larmor frequency is easily calculated

using the gyromagnetic ratio in equation (1.16) and an average holding field value of

12 gauss:

fL = γ[3He]Bo/2π ∼ 39 kHz (4.5)

The RF voltage on the coil gives a corresponding perturbing RF magnetic field Bin

which causes the spins of the polarized 3He nuclei to precess about the holding field

at frequency

ωo = ωL − ωin (4.6)

The FID signal returned on the coil is generated by the precessing magnetization

induced in the cell from the original input signal and produces a measureable voltage

in the coil given by

V (t) = Voe
−t/T2 · sin (ωot+ δ) (4.7)

This is an underdamped oscillator having a decay time constant T2 ∼ 55 ms related

to local variations of the magnetic holding field which tend to destroy the initial

alignment of the precessing spins.
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A pump rate graph from the pumping station is illustrated in figure 4.2 showing

the initial amplitude of FID signals returned by the cell at two hour intervals over a

time period of about 16 hours. The green curve shows clearly the trend to a saturation

of the 3He polarization over time. As a cautionary note the green curve should not be

considered as a direct measurement of cell polarization since the technology is only

marginally accurate.

Figure 4.2: Curve fit by the Green dashed line indicative of polarization of the
analyzer cell over a period of about 16 hours. Blue line is a linear fit provided by the
FID software.

When saturation is reached the convection oven can be turned off allowing the

cell to cool. If optical pumping is also terminatd the alkali metals in the analyzer cell

will rapidly de-polarize causing a reduction in the 3He polarization. For this reason

it is important to continue optical pumping until the alkali vapor has re-condensed

in the cell.
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4.2 Properties of the Analyzer Cell

Following polarization of the cell a significant portion of the initial polarization can

be maintained for a period of several days in a uniform holding field. This property,

when coupled with the very strong spin-dependent capture cross section of the 3He ,

make the analyzer cell ideal for performing polarimetry measurements on a beam of

cold neutrons.

The capture cross-section for cold neutrons in the cell can be accurately modeled

as a linear function of wavelength as long as the wavelengths are not too small:

σ(λ) ∼ σo
λo
λ (4.8)

The ratio of the constants σo and λo represent an instrinsic property of the cell which

determines its ability to capture neutrons. The cell used for the n3He experiment

may be referred to as ‘Hedy Lamarr’ which is discussed in [25, 26], and characterized

by

σo = 5316 bn λo = 1.798 Å (4.9)

Other important dimensions are its diameter d = 7.5 cm and its length ` = 10.3 cm.

The Cell Thickness is defined by the equation

χ ≡ nσo`

λo
(4.10)

where n is the number density of atoms in the cell. Musgrave [26] determines

the value χ = 1.004 implying that Hedy Lamarr has a 3He number density of

n ∼ 3.396× 1025 atoms/m3.

Transmission of Polarized Neutrons through an Analyzer Cell[19]: The

initial neutron beam polarization Pn(λ) is determined by the supermirror polarizer
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and shows a slight dependence on wavelength. To determine the transmitted beam

flux through the cell it us useful to construct the initial beam out of parallel and

anti-parallel spin components. If the polarization of the cell is P , the transmission of

each component through the cell is given by

Tpa(λ) = 1
2
To(λ) [1 + Pn] e−χλ(1−P ) (4.11a)

Tap(λ) = 1
2
To(λ) [1− Pn] e−χλ(1+P ) (4.11b)

and the total transmission through the cell can be written

T (λ) = Tpa(λ) + Tap(λ) = To(λ) · e−χλ [cosh(χλP ) + Pn sinh(χλP )] (4.12)

The application of this formula is indicated in figure 4.3 for two consecutive SNS

beam pulses. The first 49 time bins of the plot in blue show the transmission when

P and Pn(λ) are parallel giving a large transmission observed in the ion chamber. In

contrast, the last 49 time bins show the transmitted beam after neutron spins have

been flipped by the spin flipper. In this case Pn(λ) in equation (4.12) inherits a minus

sign. The plotted points in black show the transmission through the cell after it has

been de-polarized. This corresponds to setting P = 0 in (4.12) leading to a simple

expression for transmission through the unpolarized cell:

T (λ) = To(λ) · e−χλ (4.13)

The transmission is now independent of the spin state of the beam which is clearly

visible in the plot.

Since incident neutrons are arriving from a pulsed source, each time bin in the

plot can also be associated with a neutron wavelength λ. This is a simple linear

relationship which can be derived by noting that irregularities in the transmitted

flux are caused by Bragg scattering in Aluminum at wavelengths λ1 = 4.05 Å and

λ2 = 4.68 Å. The approximate formula determining wavelengths in Angstroms which
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Figure 4.3: Transmission of two consecutive beam pulses through a 3He cell. Blue
plot corresponds to a cell polarization of 65%.

is used for all polarimetry measurements is given by

λ =
h

mndo

[
16.67

49
tb + to

]
· 107 (4.14)

where the time bin is labeled tb in milli-seconds and where the two constants do and

to must be inserted by hand. Values calculated from the Bragg edges are

do = 19.24 Å to = 14.53 ms (4.15)

4.3 Polarimetry Apparatus and Setup

The apparatus used for polarimetry measurements [26] is shown in figure 4.4. The

spin flipper sits to the left of the apparatus and will transmit both neutron spin states

through the analyzer cell, which is mounted on a V-block at the beam centroid. A
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set of Helmholtz coils is attached to the mount which serve to initiate AFP flips of

the 3He nuclei in the cell (See section 4.6).

Figure 4.4: Polarimetry setup and AFP coils for polarimetry measurements on the
beam and the spin flipper.

The four jaw collimator is visible in the first picture sitting downstream from

the polarimetry apparatus and located directly in front of the ion chamber. During

data production the collimator doors are set to transmit a beam 8.2 cm high and

10 cm wide. However, during polarimetry the doors must be reset to form a 3.5 cm

× 3.5 cm square centered at the beam centroid along with the analyzer cell. This

setting is necessary to ensure that the only neutrons entering the ion chamber are

those which are transmitted through the analyzer cell. Neutrons outside the square

are absorbed by the Li-6 on the collimator doors and would otherwise enter the ion

chamber producing signal contamination.
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The ion chamber (not shown in either picture but viewable in figure 2.7) sits

downstream from the spin flipper, the analyzer cell, and the collimator and serves

as the beam monitor during polarimetry. While the ion chamber contains 144 signal

wires, it is only necessary to read signals on the DAQ computer from a single wire to

perform necessary measurements required by polarimetry. The obvious choice is the

central signal wire in the first wire plane labeled (S,w) = (1, 5).

4.4 Optimizing Spin Flipper Efficiency

The efficiency of the spin flipper is determined by the solution to the two-state problem

of Spin Magnetic Resonance (covered in chapter 3) which identifies the probability

P at time t that a neutron beginning in a spin-up state transitions to a spin-down

state. If the spin flipper is being driven at frequency ωrf this probability is given by

the Rabi formula

P (t) =
4ω2

F

4ω2
F + (ωL − ωrf )2

sin2

[√
ω2
F +

(ωL − ωrf )2

4
t

]
(4.16)

where ωL is the Larmor frequency of the neutrons and the quantity ωF is proportional

to the amplitude of the driving RF field. For a given neutron wavelength, the value

of t can be associated with the time spent by those neutrons in the spin flipper and

P (t) can be equated to the spin flipper efficiency εsf . Maximizing the efficiency is an

essential requirement to be measured experimentally with neutron polarimetry.

An important quantity needed to measure spin flipper efficiency is the spin flip

ratio Q(λ). The value of Q(λ) is the ratio of the transmitted signal through the

analyzer cell from the polarized beam before and after the polarization of the beam

is reversed by the spin flipper. Call these transmissions Toff and Ton which follow
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from equation (4.12) as

Toff = To(λ) · e−χλ [cosh(χλP ) + Pn(λ) sinh(χλP )] (4.17a)

Ton = To(λ) · e−χλ [cosh(χλP ) + αPn(λ) sinh(χλP )] (4.17b)

where α = 1− 2εsf . The spin flip ratio is then

Q(λ) ≡ 1 + Pn(λ) tanh(χλP )

1 + αPn(λ) tanh (χλP )
(4.18)

A useful approximation to Q(λ), which works well for the cold neutron wavelengths

provided to FnPB, follows by considering large values inside the arguments of the

hyperbolic tangents for which

Q(λ) −→ 1 + Pn(λ)

1 + αPn(λ)
(4.19)

For a spin flipper efficiency approaching 1 and a beam polarization of 95% this number

has a value of about 35-40 for a given wavelength. Experimental plots of Q(λ) are

illustrated in figure 4.5 at four different magnetic field settings near resonance.

4.4.1 Tuning Prior to Data Production

The n3He experiment cannot begin data production until spin flipper efficiency has

been optimally set. In general, this will occur when the value of the guide field and

the spin flipper RF voltage are both tuned to precise values.

Tuning the Guide Field: Let 〈Q〉 be the average value of Q(λ) for all wavelengths

(or time bins). An approximate formula for 〈Q〉 as a function of the guide field Bo

can be derived by considering variations of the neutron Larmor frequency ωL = γnBo

near the resonance associated with equation (4.16). In that case the argument of the
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Figure 4.5: Plots of Q(λ) drawn from 49 times bins available on the DAQ computer.

sine function is approximately 1 and the spin flipper efficiency can be written

εsf (ωL) ∼ 4ω2
F

4ω2
F + (ωL − ωrf )2

(4.20)

Inserting εsf (ωL) into (4.19) results in the formula

〈Q(Bo)〉 =
4ω2

F + (γnBo − ωrf )2

4ynω2
F + (γnBo − ωrf )2

(4.21)

where

yn =
1− 〈Pn〉
1 + 〈Pn〉

(4.22)

determines both the width and the height of the resonance peak. A value of ωrf is

available from equation (3.73). Using a constant 〈Pn〉 ∼ 0.95 over all wavelengths and

an effective ωF = 3, 312 rads/sec will generate the green curve of figure 4.6 in good

agreement with plotted (brown) points from initial polarimetry on 01-28-2015. From

equation (3.68), this corresponds to an average wavelength λ ∼ 4.75Å. The extension
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Figure 4.6: Plot of 〈Q〉 versus Bo.

of this approximation to cover each wavelength individually is more difficult but would

presumably eliminate the need to insert a value for ωF by hand.

Tuning the RF Voltage: The guide field is set when ωL → ωrf and the term

multiplying the sine function in equation (4.16) is very close to 1. However, the

argument of the sine can still vary with RF field provided by the spin flipper since

ωF is proportional to this field. In this case, the spin flipper efficiency can be written

εsf ∼ sin2(ωF t) (4.23)

Inserting this equation into (4.19) and taking averages shows that the inverse of 〈Q〉

will be given by

〈Q〉−1 = 1− 2〈Pn〉
1 + 〈Pn〉

sin2 ωF t (4.24)
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For values of 〈Pn〉 close to 1 this equation can also be written

〈Q〉−1 = cos2 ωF t+ yn sin2 ωF t (4.25)

Maximizing the spin flip ratio will occur when the right side of this equation is

minimized. This happens when

ωF t = mπ/2 for m = 1, 3, 5.... (4.26)

so that 〈Q〉 is given by

〈Q〉 =
1 + 〈Pn〉
1− 〈Pn〉

(4.27)

The value of ωF is ultimately determined by the RF-voltage supplied to the spin

flipper which determines its internal field Brf . If this voltage supply is unlimited,

then any number of RF-voltages will optimize the operational efficiency of the spin

flipper. However, larger voltages also mean larger RF magnetic fields which increases

the possibility of interference with other critical components of the experiment. For

this reason alone, it is convenient to choose the lowest value of m. A plot showing

the first complete oscillation is illustrated in figure 4.7 from 01-28-2015 polarimetry.

An analysis of the data points indicate a very precise correlation to equation (4.25).

The value of the minimum can be regarded as a measurement of the average beam

polarization determined from the equation

〈Pn〉 =
1− 〈Q〉−1

1 + 〈Q〉−1
(4.28)

4.4.2 Tuning During Data Production

Two magnetometers installed near the spin flipper monitor the guide field Bo during

data production and show that Bo can drift over time with sudden changes as large

as 50 mG. These changes are less than one percent of the value of the guide field but

have a measurable impact on the spin flipper efficiency since the Larmor frequency
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Figure 4.7: Plot of 〈Q〉−1 versus RF voltage on the AWG-3022B function generator.
The minimum near 400 mV is indicative of maximum spin flipper efficiency. Maximum
values less than 1 can be attributed to departures of the guide field from resonance.

ωL of the neutrons changes with the guide field. The mechanism for guide field drifts

can be attributed to components at the SNS external to the n3He experiment. As an

example, field measurements in the presence of the moving 30 ton overhead crane show

contributions on the order of 10 mG. Regardless of the source however, it is clearly

important during polarimetry measurements to ensure that εsf remains maxmimized.

During data production a plot of 〈Q(Bo)〉 covering a large range of possible guide

field values like figure 4.6 is not necessary. Instead, it is more reasonable to make

measurements using values of Bo slightly off-resonance. A least-squares fit to the

curve as in figure 4.8 then determines a single optimal value for Bo which can be set

by the guide field power supplies. The optimization curve for small variations of Bo
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Figure 4.8: 〈Q〉 plotted against small variations of the guide field. Compare with
figure 4.6.

is approximately inverse-parabolic and can be modeled as

〈Q〉 = 〈Q〉max − C · (B −Bo)
2 (4.29)

where B is the tunable field variable and C is a large constant having a value of

approximately 500− 1000G−2.

The RF magnetic field can also be tuned during data production. Unlike the guide

field though the value of Brf is not expected to drift over time making measurements

unneccessary. Nevertheless, an optimization plot for several relatively small variations

of voltage settings on the AWG-3022B is shown in figure 4.9: The curve exhibits a

very wide maximum indicating a wide tolerance in the magnitude Brf for effective

spin flipper operation.
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Figure 4.9: Plot of 〈Q〉 versus RF signal amplitude applied to the spin flipper.

4.5 Neutron Beam Polarization

The polarization Pn(λ) of the neutron beam [29] can be determined from independent

measurements with a polarized cell and an unpolarized cell. The transmission through

an unpolarized cell has already been determined to be

Tunp = To(λ) · e−χλ (4.30)

The spin flipper can be on or off here since the transmission through the cell favors no

direction of the incoming spins. Now suppose transmission measurements are made

through a polarized cell with the spin flipper on and off. Refer to these transmissions

as Ton and Toff , and define relative transmission coefficients R1 and R2 by

R1 ≡
Ton
Tunp

R2 ≡
Toff
Tunp

(4.31)
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For a polarized beam incident on a polarized cell, the total transmission through the

cell is given by equation 4.12. If the polarization is reversed by the spin flipper having

an efficiency εsf , then the values of R1 and R2 will be

R1 = cosh(χλP ) + Pn sinh(χλP ) (4.32a)

R2 = cosh(χλP ) + αPn sinh(χλP ) (4.32b)

where α = 1− 2εsf . Solving for cosh(χλP ) in terms of R1 and R2 leads to

cosh(χλP ) =
R2 − αR1

1− α
(4.33)

Now solve equation 4.32a for Pn

Pn =
R1 − cosh(χλP )

sinhχλp
(4.34)

and insert equation 4.33 to determine the formula by which the polarization of the

neutron beam can be determined. One finds

Pn(λ) =
R1 −R2√

[R2 − (1− 2εsf )R1]2 − 4ε2sf

(4.35)

It is important to observe here that polarization values get smaller as the value of εsf

is increased near the value of 1. An approximate formula can be determined in the

form

Pn = −mεsf + b (4.36)

This means that the effect of assuming an ideal spin flipper efficiency in the calculation

of beam polarization is to give a result which is somewhat smaller than it actually

is. Based on the large value of the spin flipper efficiency anyway, it is appropriate to

71



Figure 4.10: Average neutron beam polarization determined from 8 polarimetry
measurements.

neglect small corrections to (4.35) and write

Pn(λ) =
R1 −R2√

[R2 +R1]2 − 4
(4.37)

The experimental average polarization curve is illustrated in figure 4.10 which is

determined from eight independent measurements during the period February to

November 2015. Only wavelengths in the range 3.48 Å < λ < 5.99 Å are used for the

calculation and the data for the plot is summarized in Table A.4 of the Appendix.

The small slope in the curve is attributed to the supermirror polarizer.

4.6 Spin Flipper Efficiency

A measurement of the spin flipper efficiency during neutron polarimetry requires the

ability to implement a near one-hundred percent reversal of the 3He nuclear magnetic
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moments inside the analyzer cell. This can be achieved through the NMR technique

of Adiabatic Fast Passage (AFP).

Adiabatic Fast Passage: A set of Helmholtz coils placed around the analyzer cell

is shown in the right photograph of figure 4.4. A minimum diameter of the coils is

needed to ensure that the magnetic field it produces is uniform over the entire volume

occupied by the cell. During polarimetry, the magnetization M of the cell can be

inverted by applying an RF pulse to the coils, perpendicular to the direction of the

guide field, and executing a linear sweep across the Larmor frequency of the 3He

nuclei.

The mechanism by which the magnetic moments are flipped is best understood

by inspection of the graphic in figure 4.11 showing the rotation θ(t) of an effective

field BBBeff viewed in the frame of the rotating 3He spins and given by

BBBeff = (Bo − ω(t)/γ) ŷ̂ŷy +Bafp x̂̂x̂x (4.38)

The magnetic moments µµµ precess about this vector as its y-component changes sign

thereby reversing the direction of M . The linear sweep covers a frequency range of

20–60 kHz in 2 seconds. This time is appropriately chosen so that the time spent

by the individual µµµ near the Larmor frequency is short compared to their relaxation

time. The efficiency of AFP flips documented in [26] is about 98% which should also

apply here since both experiments use the same instrumentaton.

Calculation of Spin Flipper Efficiency: The experimental spin flipper efficiency

εsf (λ) can be calculated based on transmission measurements of the polarized neutron

beam through a polarized 3He cell having spins which can be flipped by AFP. If the

spin flipper is initially off, the total transmission through the cell with polarizations
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Figure 4.11: A magnetic moment µµµ of a 3He nuclei shown in red getting dragged
across the x-z plane as it precesses about BBBeff shown in blue.

P and −P is

T = To(λ)e−χλ [cosh(χλP ) + Pn sinh(χλP )] (4.39a)

Tafp = To(λ)e−χλ [cosh(χλP )− Pn sinh(χλP )] (4.39b)

which determines the polarization quantity

Poff =
T − Tafp
T + Tafp

= Pn tanh(χλP ) (4.40)

If the procedure is repeated with the spin flipper turned on, equations (4.39) are

modified to read:

T = To(λ)e−χλ [cosh(χλP ) + αPn sinh(χλP )] (4.41a)

Tafp = To(λ)e−χλ [cosh(χλP )− αPn sinh(χλP )] (4.41b)

and a new polarization quantity is
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Figure 4.12: Plot of Average spin flipper efficiency determined from polarimetry
measurements and AFP coils.

Pon =
T − Tafp
T + Tafp

= αPn tanh(χλP ) (4.42)

The two values Poff and Pon are determined from measurable quantities produced by

the beam monitor, and they are easily shown to determine the spin flipper efficiency

from

εsf =
1

2

[
1− Pon

Poff

]
(4.43)

This calculation initially assumes that the action of the AFP flip does not de-polarize

the beam; But realistically, each AFP flip produces a small cell de-polarization on

the order of a few percent. An easy way to get around this is to perform transmission

measurements using an extra AFP flip back to the initial polarization of the cell. One

can then average the initial transmission with the transmission following two AFP

flips. A formula for the emerging beam polarization with the spin flipper on or off
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will then modified slightly to read

Pon/off =
T̄ − Tafp
T̄ + Tafp

(4.44)

4.7 Cell Polarization

The value of the cell polarization [25, 26] is not needed to perform measurements

of beam polarization and spin flipper efficiency. Nevertheless, cell polarization was

determined as an integral part of polarimetry—mainly because of its importance as

a diagnostic tool but also because data required to determine cell polarization and

beam polarization are identical.

Cell polarization can be determined by comparing independent transmissions of

an unpolarized beam through a polarized cell and then through an unpolarized cell.

For an unpolarized cell the transmission is given by

Tunp(λ) = To(λ)e−χλ (4.45)

and if the cell has a polarization P this formula has been shown to generalize to

Tpol(λ) = To(λ)e−χλ coshχλP = Tunp(λ) coshχλP (4.46)

Solving for the polarization yields

P =
1

χλ
cosh−1

[
Tpol(λ)

Tunp(λ)

]
(4.47)

The n3He experiment uses only polarized neutron beams, so the quantities Tpol and

Tunp must be approximated using intermittent spin flipped neutrons which can be

averaged over a data run. These averaged values can then be inserted into (4.47)

to give a useful result. A plot of cell polarization is shown in figure 4.13. From

a theoretical point of view, the polarization of the cell cannot be a function of the
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neutron wavelengths in the beam. This is generally true from an inspection of the plot

however a small 1-2% positive or negative slope is typically observed and attributed to

systematic effects. Ultimately, the degree to which the cell can be polarized depends

Figure 4.13: Plot from 5-20-2015 polarimetry indicating a cell polarization of about
60 percent over the wavelength range 3.5Å— 6.0Å.

on the quality of the infrared lasers and other equipment at the optical pumping

station. Average values ranged from about 60-70% over the length of the experiment.

4.8 Polarimetry Measurements Off-Axis

Polarimetry measurements are typically performed by placing the analyzer cell at the

centroid of the beam. However, the cross-sectional area of the cell is roughly 1/9 the

size of the beam so it is possible to place the cell off-axis and perform polarimetry

measurements which sample other parts of the beam. Off-axis measurements are

important for two reasons: First, beam polarization is not constant over the cross-

section of beam so that an off-axis measurement is expected to show a somewhat

different polarization spectrum. Second, although the efficiency of the spin flipper is
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expected to be constant over all parts of the beam, it is important to verify this with

off-axis measurements.

The culmination of two off-axis measurements of beam polarization and spin

flipper efficiency taken on 06-23-2015 are shown in figure 4.14. Plotted points in black

were obtained by placing the cell 3.5 cm up from beam centroid. Likewise, plotted

points in red were obtained by placing the cell 3.5 cm beam left. For reference, on-axis

plotted points shown in blue were taken from polarimetry results of 5-20-2015.

Figure 4.14: Off-axis measurements of beam polarization and spin flipper efficiency.
Black: 3.5 cm beam-up. Red: 3.5 cm beam-left. Blue: Beam-Center.
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A reduction of beam polarization over all wavelengths by about 1.5% is evident

from the beam left data while a smaller change (with a change in shape for larger

wavelengths) is indicated from the beam up data. In contrast, the spin flipper

efficiency plots show only insignificant changes in the calculated efficiency using off-

axis positioning of the analyzer. For example, a calculation of the percent change in

εsf for each analyzer location averaged over each wavelength is

∆εsf (Left) = 0.0638 % ∆εsf (Up) = 0.0932 % (4.48)

Possible bias exists in the off-axis measurements since all polarimetry results for

the n3He experiment use the ion chamber as the beam monitor. Any of several signal

wires near the front of the ion chamber can be used to extract signal voltages, and

the single best choice for on-axis measurements is the central wire labeled (1,5) in

the first wire plane. This same wire is used for beam left measurements but a shift

upward by 3.5 cm required voltage readings from wire (2,7)∗ which is situated 3.8 cm

above the central wire and 1.9 cm further into the ion chamber. Attempts at using

wire (1,5) produce non-sensical results.

4.9 Comparison with NPDGamma Measurements

Beam polarization measurements at FnPB have also been reported by Musgrave [26]

for the NPDGamma experiment. Both experiments receive neutrons from the same

neutron guide and the same supermirror polarizer allowing for the possiblity of a

credible comparison. However, many of the NPDGamma measurements were taken

in the presence of para-hydrogen, aluminum, and chlorine targets which may not be

useful for comparison. Instead, it is more practical to consider only the beam-center

(BC) and beam-Left (BL) measurements in Table A.6 of Musgraves’ paper which

were taken in the absence of a target. The beam-center data are compared with the

∗Ideally, one would like to use wire (1,7) for this measurement but this was a dead wire in the
ion chamber and not used in the experiment.
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n3He beam average plot of figure 4.10 while the beam-left data are compared with the

n3He beam-left plot in figure 4.14. For convenience all four plots are shown in figure

Figure 4.15: Beam polarization Pn(λ) determined by n3He and NPDGamma
experiments at beam-center and beam-left.

4.15 for comparison. Since the measured wavelength spectrum of each experiment is

different the individual points defining each curve cannot be directly compared.

There are several important factors which may contribute to the small ∼ 1%

discrepancies revealed by both the beam-center and beam-left plots. While all

polarimetry for the NPDGamma experiment utilized the M4 beam monitor to assess

cell transmissions, measurements for n3He experiment relied on the central wire

(1,5) at the front of the ion chamber. Actual systematic effects caused by different

equipment are speculative but could be due to differences in gas pressures and

mixtures enclosed by each device. The NPDGamma polarimetry measurements were

also performed close to 2 meters downstream from the n3He measurements, although

no attempt will be made to establish why a downstream measurement would render

a different result. Finally, it can also be suggested that different spin flippers used

for the two experiments might contribute to measured differences but this would not
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be important for beam-center measurements where the efficiency of both devices are

comparable.

Having outlined several possibilities, the most probable source of error can be

traced to the fact that backgrounds in the two experiments were very different. For

example, section 4.10 shows 120 Hz noise in the ion chamber not reported in the

NPDGamma experiment. An effective method to probe the discrepancy might be a

new set of polarimetry measurements using the M4 monitor and the n3He spin flipper.

4.10 Signal Background

As previously indicated, the central wire in the first wire plane of the ion chamber

is used for all polarimetry measurements—except those above beam center. All

polarimetry calculations require the removal of the signal background recorded by

this wire on the DAQ computer. The background is determined by closing the

secondary shutter and performing a data run while the experiment is re-configured

for polarimetry. The plot in figure 4.16 illustrates a typical background measured at

Figure 4.16: Background signal read by wire 21-4 versus wavelength during
polarimetry on 11-30-2015.
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each of the 49 time bins. In general, the signal is composed of a DC bias with 120

Hz noise superimposed—this is true for all wires in the ion chamber.

The average background amplitude can also be compared with the average signal

received when the analyzer cell is in place and the shutter is open. Table 4.1 indicates

that the presence of the cell and collimator severely limit the neutron flux to the point

where the magnitude of the transmission of anti-parallel spins through the cell is only

about 5 times the signal background.

Table 4.1: Table showing the signal background on wire (1,5) compared to signal
received from parallel and anti-parallel neutron spins travelling through the analyzer
cell during polarimetry.

Date Background Parallel spins Anti-parallel spins
3-25-2015 -1.126E05 1.426E07 5.113E05
5-20-2015 -1.124E05 1.508E07 6.852E05
9-23-2015 -1.182E05 8.991E06 4.350E05
11-30-2015 -1.089E05 1.281E07 5.288E05

Another important statistic is to assess the variability of the background on wire

(1,5) during polarimetry measurements performed over the course of the experiment.

Table A.5 has been included showing the value of the signal averaged over eleven

independent measurements of at each wavelength. The calculated values of the

variance is a strong indicator that the background is relatively unchanging.
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Chapter 5

Ion Chamber Profile and

Simulation

A simulation of ion chamber yield is an important component of the n3He experiment

enabling the calculation of geometric factors and correlation coefficients necessary for

the determination of the physics asymmetry Ap from the raw data. If Ap is to be

measured to a precision of ∼ 10−8 with an uncertainty of a few percent, then a useful

simulation should re-produce the actual measured yield in each of the 144 signal wires

with approximately the same uncertainty. Before the simulation can be programmed

however, it is necessary to have an understanding of how the interaction of equation

(1.1) generates electrical current in the wires. In addition, it will be beneficial to have

a full assessment of the yield profile recorded by the DAQ computer.

5.1 Yield from Ionization Tracks

The yield recorded on each of 144 signal wires in the target chamber results from

ionization tracks left by the decay protons and tritons. Production of ions is a

complicated function of the energy of the decay particles and can be characterized by
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the stopping power, or loss of particle energy per unit path length

S(E) = −dE
dx

(5.1)

If the stopping power is known the mean range of the particle can be determined from

R =

∫ Eo

0

dE

S(E)
(5.2)

Range tables and stopping power tables for the proton in gaseous He is available from

the National Institute of Standards and Technology (NIST) and is provided by the

website nist.gov/pml/data/star/index.cfm. With corrections made for approximately

0.5 atmospheres of pressure in the ion chamber, ranges for both particles can be

determined by inputing their initial decay energies leading to

Figure 5.1: Plot of energy vs range for the proton at 1/2 atm.
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Rp = 10.65 cm RT = 2.48 cm (5.3)

A plot of proton energy versus range constructed from the range tables is shown

in figure 5.1. The plot is accurately approximated from a least-squares solution as a

6th order polynomial

E(r) = 0.00000588 · r6 − 0.00020850 · r5 + 0.00280706 · r4

− 0.01759955 · r3 + 0.04719794 · r2 + 0.03291656 · r (5.4)

This function will be useful for the development of the simulation since the quantity

E(r2)− E(r1) (5.5)

is proportional to the ionization energy produced by either decay particle over the

distance ∆r = r2 − r1. A plot of stopping power versus range is available from the

website but is also approximated by differentiating the polynomial in (5.4). With

adjustments along horizontal axes, plots for both the proton and the triton are shown

in figure 5.2.

The schematic in figure 5.3 shows the array of (blue) signal wires in the ion

chamber interspersed between neighboring sets of (red) high voltage wires. Since the

high voltage wires are kept at a large positive voltage, a negative ion produced between

any neighboring set of four will be repelled by each one and ultimately be collected by

the signal wire at the center. Four neighboring high voltage wires therefore delineate

the corners of a 1.9× 1.9 cm cell with a horizontal depth approximately equal to the

length of the signal wire—about 20 cm. A simple labeling scheme for all 144 cells

uses the coordinate pair (S,w) which begins at the bottom left of the diagram with

the value (1,1). As an example, the cell (2,5) surrounds the central signal wire in

second blue column from the left.
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Figure 5.2: Plots of stopping power for the proton and triton moving off in opposite
directions.

The collection of ions within the cells from ionization tracks provides a method by

which a simulation of ion chamber yield can be constructed. The essential program

is to employ a random number generator to simulate events in the ion chamber with

a probability decreasing exponentially with distance z from the front of the chamber.

Each event is the source of ionization tracks from opppositely directed protons and

tritons which otherwise move off in a random direction. The total energy collected

in each of the 144 cells can then be calculated by energy deposited from the particle

tracks.

5.2 Ion Chamber Profile

5.2.1 Variability of Yield

The first several months of data production at the SNS used a proton beam power

of approximately 845 kilowatts while DOE mandates lead to increased power up to

1.4 megawatts during the final months of production. The proportionality between
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17 HV Frames with 8 wires each

16 signal Frames with 9 wires each

1
Figure 5.3: Graphic drawing showing wire grid pattern of the frame stack.

the SNS proton beam power and the FnPB neutron beam power implies that yields

recorded in the ion chamber also varied over the same relative magnitude.

Even with large yield variations an important statistic is available in the form of

a normalized yield defined by

NS,w(λ) ≡ 〈IS,w(λ)〉
〈M1max〉

(5.6)

The quantity 〈IS,w(λ)〉 is the signal at wavelength λ recorded on wire (S,w) averaged

over a single data run (approximately 25, 000 pulses at 60 Hz) while 〈M1max〉 is

the average maximum signal recorded on the M1 monitor for that data run. The

variation of the normalized signal should be quite small and is illustrated in figure

5.4 for wire (1,5) at two separate time bins. These histograms were developed using

300 arbitrarily chosen ‘good’ data runs in the range 18600 - 38049. Averages and

standard deviations are

N1,5(λ12) = 43.9460± 0.3565 N1,5(λ24) = 55.5538± 0.4709 (5.7)
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Figure 5.4: Histograms of the nomalized yield on wire (1,5) for two separate time
bins using 300 arbitrarily chosen data runs.

This analysis a good indicator that normalized yields for each wire may show

variability of less than one-percent for all data production.

5.2.2 Map of Ion Chamber Profile

For any given data run it is possible to develop an ion chamber profile of the average

signal recorded on each wire. However, a more complete assessment is a mapping of

the average signal recorded on each wire at each of the 49 time bins for which the signal

is recorded—equivalent to 7056 data points. Such plots exhibit a sharp exponential

decay of the yield with distance from the front of the ion chamber. Significant yield

attenuation also occurs for the top two rows of wires and the bottom two rows of

wires. Neither of these wire planes is exposed to the direct beam which extends only

about 4 cm in either direction from the central wire plane.

A useful and quantitave way to develop a chamber profile is to graph the decay

of the yield signal along each of the 9 horizontal wire planes. Figure 5.5 shows plots

determined from two separate data runs which have been normalized so that the total

yield in all wires adds to 144. The value of the data run numbers indicates that the

data was collected at two times separated by several months—strong evidence of the
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Figure 5.5: Mapping of yields along the nine horizontal wire planes.

repeatability of determining normalized yields. Each decay curve is composed of 16

data points equally spaced along the length of the ion chamber. Of particular interest

is the signal maximum between the second and third wires for the top two and bottom

two wire planes which may be indicative of the proton range in the ion chamber.

While the first few points near the front face of the ion chamber do not necessarily

fall on a pure exponential decay curve, a precise exponential decay of the yield does

result for the remaining 12 points and will take the form

Yw(S) = Awe
−αwS (5.8)

The two parameters Aw and αw for each horizontal wire plane have been determined

from a least-squares fit for three separate time bins all associated with data run 21740

and are summarized in table 5.1.

The correlation coefficients R2 for each curve generally show a very good

exponential fit. From this it can be inferred that the listed values of Aw and αw are
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Table 5.1: Values of Aw and αw associated with three separate time bins for data
run 21740

TB 01 TB 20 TB 48
Aw αw R2 Aw αw R2 Aw αw R2

w = 1 1.057 .2577 .972 1.443 .3080 .984 2.824 .4650 .522
w = 2 2.603 .2436 .993 3.454 .2902 .996 5.601 .3912 .971
w = 3 5.381 .2315 .999 7.002 .2797 1.00 8.568 .3524 .988
w = 4 8.166 .2356 .999 10.68 .2851 .999 15.83 .3873 .998
w = 5 8.616 .2350 1.00 11.24 .2837 .999 16.78 .3846 .998
w = 6 8.435 .2365 .999 11.04 .2857 .999 16.53 .3891 .993
w = 7 6.332 .2331 .999 8.217 .2825 .999 10.20 .3572 .988
w = 8 2.878 .2377 .998 3.801 .2843 .998 5.124 .3622 .974
w = 9 1.298 .2690 .982 1.787 .3204 .985 4.927 .4896 .879

fundamental constants associated with the decay profile having only small variations

between data runs.

The decay constants produced by the data provide important information about

the ion chamber. Plots of the decay constants versus wire number for the three listed

time bins are shown in figure 5.6 and show considerable increases for the outer wires

w = 1, 2, 8, 9. The relative size of the increase is also dependent on the time bin

chosen but nevertheless universal over all time bins. An immediate problem arises

because each time bin is associated with a specific neutron wavelength and the decay

rate of the signal should not vary with the y-coordinate. One way to explain this is

to assume that a uniform background exists for all wires in the ion chamber. This

background will be a larger portion of the signal for the outer wires since they produce

smaller yields. Subtracting 0.6% of the total yield evenly spread over the wires slightly

modifies the profile and leads to least-squares fits which produce a flat value of αw

over the 9 wire planes.

It is also beneficial to plot a least-squares determination of αw over all 49 times

bins for each wire plane w. The plots show good linearity except for the first few

times bins and also the last few time bins. If backgrounds can be subtracted from
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Figure 5.6: Plots of αw versus wire number w.

intial yields this value will be the same for all wire planes in a given time bin so that

a single linear function will suffice to determine αw(T ) for most of the time bins.

Graphs for the decay amplitude Aw versus wire plane can also be constructed

from table 5.1 and these have been plotted in figure 5.7. Once again, values of

the amplitude grow with with larger time bins, but this not unusual because the

normalized yield of each time bin is the same. This requires a larger initial amplitude

for a yield that decays more rapidly. Also evident from figure 5.7 is a general trend

for larger amplitudes on higher wire numbers compared to their conjugates. This can

be attributed to the fact that the top door of the four-jaw collimator is opened by a

small extra distance ∆y ∼ 2 mm from the central wire plane compared to the lower

door.

5.3 Monte Carlo Simulation

A quantitative account of the yield profile in the ion chamber allows for the

development of a Monte Carlo simulation capable of matching the amplitudes Aw(T )

and decay constants αw(T ) for each of the 49 time bins to within a few percent. The
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Figure 5.7: Values of Aw for three time bins associated with data run 21740.

essential problem of the simulation is to generate an appropriate distribution of decay

events inside the ion chamber fully described by the set of coordinates

E1→ (xi, yi, zi, θi, φi, lproton)

E2→ (xi, yi, zi, π − θi, π + φi, ltriton)

The three cartesian coordinates indicate the location of the event decay in the ion

chamber, the two angles represent the direction of the decay proton, and the lengths

lproton and ltriton are ranges of the decay particles determined in equation (5.3). Each

set can then be directed into a subprogram to calculate energy deposited to individual

cells by the decay.

Simulation of the Neutron Beam: A preliminary requirement to the develop-

ment of the simulation for the ion chamber, is a simulation of the neutron beam

itself. The beam emerging from the neutron guide has cross-sectional dimensions 10

cm wide by 12 cm high having an initial density which is roughly flat. However,
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beam spreading occurs in both x- and y- directions leading to variations in the beam

density as it moves in the +z direction. This can be described mathematically as

a convolution of a 2D step function with a 2D Gaussian distribution characterized

by variances σx and σy which are both functions of the distance zi travelled from

the end of the guide. Computer code generating N coordinates xi and yi from the

convolution is produced by the FOR statement:

[01] for(i=0; i<N; i++){
[02] x = 2.0*myran.doub() - 1.0;
[03] y = 2.0*myran.doub() - 1.0;
[04] xr = xzp*myran.doub() + xzm;
[05] yr = yzp*myran.doub() + yzm;
[08] ww = x*x + y*y;
[09] ww = sqrt((-2.0*log(ww))/ww);
[10] xi = sigmax*x*ww + xr;
[11] yi = sigmay*y*ww + yr;
[12] }

On lines 4 and 5 the variables (xzp, xzm, yzp, yzm) determine the width and height

of the neutron guide which will prevail if the variances sigmax and sigmay are chosen

to be zero. On the other hand, inserting non-zero values for the variances gives the

shape of the beam downstream. Histograms in figure 5.8 are prepared showing the

simulated x-distributed shape of the beam at three values of sigmax. The values

sigmax = 1, 6 were chosen to simulate the shape of the beam at the position of the

beam scans performed in September and October 2014. The histograms place events

into 500 bins having bin sizes 1 mm wide. If ni is the portion of the N events located

in each bin then the coordinate average and the variance can be determined from

x̄ =
1

N

500∑
i=1

nixi σ2
x =

1

N

500∑
i=1

ni(xi − x̄)2 (5.9)

With an initial beam width of ∆x = 10 cm the central maximum at each variance is

easily shown to occur near 8.55 cm which is the x-coordinate of the simulated beam

centroid relative to the arbirarily chosen coordinate system.

Decay Events in the Ion Chamber: The transformation of a beam simulation

to an ion chamber simulation can be accomplished with only minor adjustments to
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Figure 5.8: Histogram of beam density in x-direction at three values of σx.

the program. First, the beam variances σx and σy must be reset so that the random

coordinate zi is zero at the entrance to the ion chamber. Computer code determines

variances to be

[1] sigmax = 1.2726 + zi*0.0093
[2] sigmay = 1.7221 + zi*0.0126

The slope of these linear functions is simply the angle of beam spread measured in

radians along each transverse direction whereas the two constants in front are an

estimate of the variance at the front of the ion chamber which can be approximated

from extrapolating 2014 beam scans results.

The second adjustment requires a re-shaping of the beam in the interior of the ion

chamber. This shape is determined by the four-jaw collimator located just in front

of the ion chamber which absorbs the entire beam outside a rectangle determined

by the settings on the individual doors. The action of the collimator on the beam

can be introduced into the simulation by rejecting random coordinates outside of an
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appropriately chosen perimeter. Like the variances σx and σy, this perimeter must be

designed as a slightly increasing function of zi to account for beam spreading after

the collimator.

A final adjustment is to generate the event coordinate zi with a probability that

decreases exponentially with the distance from the front of the ion chamber. If zi is

a flat random variable in the interval [0, 1] then the simple FOR statement

[01] for(i=0; i<N; i++){
[03] z = myran.doub();
[04] zi = -log(1-z)/alpha;
[05] }

will create an exponential distribution of N events with a decay constant ‘alpha’ from

the random source.

Distributions of event coordinates produced in the ion chamber for N = 100, 000

are displayed in figure 5.9. The position zi in the chamber is on the vertical axis

while values of xi and yi for each zi are shown in red an green, respectively. The

perimeter set by the collimator is easily determined by evaluating the xi and yi limits

of the distribution at zi = 0. The transverse spreading of the beam in both transverse

directions is barely visible as the value of zi increases.

The number of events (either red or green) in the illustration is actually much less

than the orignal value of N . The length of the ion chamber enclosing the volume of

3He is 33.83 cm. A small portion of events generated with zi > 33.83 will therefore

not be useful. For those zi which are useful, further rejections by the program will be

necessary to generate the transverse coordinates xi and yi inside the perimeter. As

an example, for N = 100, 000 and a decay constant alpha = .140, the exponential

decay only uses 99062 values of zi form the pseudorandom number generator. When

x- and y- coordinates outside the perimeter are rejected, this number drops further

leaving only 43583 useable events. These numbers will change if the seed for the

random number generator is changed.
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Figure 5.9: Profile of the neutron beam at the front and back of the ion chamber.

Calculation of Simulated Yield: A copy of the required source code for

generating simulated ion chamber decay coordinates for the n3He experiment is

included in the appendix for reference. The code includes calls to subprograms which

use each set of random coordinates to calculate energy deposits made by the proton

and triton into the 144 cells. The two subprograms and their function are:

grid41 ----> Energy deposit from proton decay track
grid42 ----> Energy deposit from triton decay track

Each time these programs are called energy from the tracks is added into a 2D array.

After a large number of calls, the program outputs the identification (S,w) for each

cell along with the total energy deposited to the cell. All programs can be viewed at

n3he.wikispaces.com.
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5.4 Calculation of g-factors and Correlation Coef-
ficients

The problem of determining the physics asymmetry along with its experimental error

is assisted by computer simulations capable of determining accurate values for g-

factors gm and covariance matrix elements Cij. The g-factors cannot be determined

from actual experimental data. A computer simulation however can measure energies

deposited to individual cells in the wire chamber by reaction proton and triton tracks

along with polar angles associated with each track. For a simulation consisting of N

trial interactions for a given wavelength, the g-factor for cell m is given by

gm(λ) =

∑N
k=1Emk(λ) sin θmk∑N

k=1 Emk(λ)
(5.10)

An average over all 49 wavelengths recorded by the DAQ is

〈gm〉 =
1

49

∑
λ

gm(λ) (5.11)

The ion chamber for the n3He experiment consists of 16 planes of 9 wires each.

Techinically, there are 144 g-factors but g-factors associated with the central wire

in each wire plane are approximately zero. For a yield distribution inside the ion

chamber symmetric across the central wire plane, g-factors on either side are the

same to within a sign, so an accurate simulation should only yield 64 g-factors. On

the other hand, the asymmetry of the signal which is known to exist in the ion

chamber might be large enough to require a full set of 128.

The purpose of the covariance matrix is to eliminate statistical redundancy caused

by the random decay tracks in the ion chamber. Calculation of individual Cij will

require computation of a 64×64 matrix for individual sets of decay tracks—one from

a spin-up neutron and another from a spin-down neutron. The size of the matrix

dictates a large amount of computing power. The energy deposited into cells inside

the ion chamber must first be divided according to whether the neutron spins are

either up or down. Let
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• E+
j,k: Energy absorbed by the jth cell from the kth interaction involving a spin

up neutron.

• E−j,k: Energy absorbed by the jth cell from the kth interaction involving a spin

down neutron.

With these two definitions the physics asymmetry can be determined for a conjugate

wire pair from the equation

Aj,k =
1

2

[
E+
j,k − E

−
j,k

E+
j,k + E−j,k

]
− 1

2

[
E+
j∗,k − E

−
j∗,k

E+
j∗,k + E−j∗,k

]
=

1

2
[Yj,k − Yj∗,k] (5.12)

Since there are 144 wires in the ion chamber and the quantity Aj,k is determined for

each pair of wires, this implies a 72×72 covariance matrix having individual elements

Cmn =
1

gmgnN

N∑
k=1

(
Am,k − Ām

) (
An,k − Ān

)
(5.13)

The covariance matrix can be used to determine an appropriate weight factor for each

wire pair. This entails finding the inverse of Cmn and writing

Wm =

∑
nC
−1
mn∑

m,nCmn
(5.14)

The final value for the physics asymmetry is then the weighted sum

Āphys =

∑
mWmAm∑
mWm

=
∑
m

WmAm (5.15)
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Chapter 6

Concluding Remarks

Neutron polarimetry measurements were planned and performed on a monthly basis

to verify the stability of the neutron beam and the operational status of critical

components of the experiment. Beam polarization has been measured to a precision

at least as good as expected uncertainties in the measured DDH coupling constants of

a few percent. In addition, the spin flipper showed only small deviations from 100%

at a level less than about 0.4%.

The capabilities of the spin flipper have met all expectations. The double cosine-

theta coil configuration was shown to be a very efficient design having the ability

to flip both longitudinal and transversely polarized spins. This was an important

factor in the success of the experiment since the initial plan to use longitudinal spin

polarizations could not be realized.

The use of 18 AWG aluminum wire to wind the coils was a useful (and necessary)

design feature. Although solid copper will achieve a higher conductivity, not only

does copper have unfavorable activation properties when exposed to a neutron beam,

but the increased tensile strength of the wire introduces difficulties when winding

around the sharp corners of the double cosine-theta coil.

Despite the successes of the spin flipper, there exists two possible improvements

for future spin flipper desgins of this type which deserve mention. First, it is

recommended to construct both the inner cylinder and outer return coils using

available 3D print technology. The use of PVC pipe for the n3He spin flipper was

un-neccessarily heavy and time consuming to build. Second, the spacing between the
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Figure 6.1: Schematic showing ranges of the isospin-0 coupling constants provided
by the n3He and ‘hypothetical’ XYZ experiment. A second experiment narrows the
range of both coupling constants to within the green box. The rectangular perimeter
indicates the reasonable ranges determined by the DDH model.

ends of the coils and the end-plates of the spin flippers’ aluminum shell may have been

larger than necessary. Decreasing this separation on both ends of the device would

enhance the flow of faraday currents in the end-plates yielding a sharper boundary

for the internal RF magnetic field—and therefore improved spin flipper efficiency.

The goal of the n3He experiment is a measurement of the PV proton asymmetry.

Equation (1.5) shows that if the values of Ap and h1
π are known, then a succesful

experiment will only extract a linear relationship between the couplings h0
ρ and h0

ω. If

uncertainties in the value of Ap and h1
π are also included, this will determine a range

of values for h0
ρ and h0

ω shown by the grey band in figure 6.1. A reduced range of

values is shown by the green box in the figure representing the intersection of the

n3He results with a second blue band provided by a another experiment XYZ.

100



Data analysis is underway for the both the PC and PV proton asymmetries.

However, published results will only be available pending the completion of Monte

Carlo simulations which can accurately predict g-factors and correlation coefficients

necessary for the calculation of the asymmetries.

101



Bibliography

102



[1] A measurement of the Parity Violating Proton Asymmetry in the Capture of

Polarized Cold Neutrons on 3He. A Proposal submitted to the SNS FNPB PRAC.

November 15, 2007. 2

[2] Detector Development for an Experiment to Measure the Parity Violating Proton

Asymmetry in the Capture of Polarized Cold Neutrons on 3He. J.D. Bowman,

C.B. Crawford, M.T. Gericke et al. March 17, 2008. 2

[3] n3He collaboration. Proposal update for the n3He Experiment. A Measurement

of the Parity Violating Proton Asymmetry in the Capture of Polarized Cold

Neutrons on 3He 2, 4

[4] Bertrand Desplanques, J.F. Donoghue, B.R. Holstein. Unified Treatment of the

parity violating nuclear force. Annals of Physics 124(2):449-495, 1980. 2

[5] Herbert Anderson. Precise Measurement of the Gyromagnetic Ratio of He3.

Physical Review, Volume 76, Number 10, November 15th, 1949. 8

[6] Greene G.L. Ramsey, N.F et al. A New Measurement of the Magnetic Moment

of the Neutron. Phys. Lett B, Vol 71B, 21 November, 1977. 8

[7] B.C Murphy. Neutronic Design Calculations on Moderators for the Spallation

Neutron Source. Oak Ridge National Laboratory, Log No: 32, July 20, 1999. 10

[8] W. Lu, P.D. Ferguson, E.B. Iverson, F.X. Gallmeier, I. Popova. Moderator

poison design and burn-up calculations at the SNS. Journal of Nuclear Materials

377(2008) 268-274. 10

[9] N. Fomin, G.L. Greene, R. Allen, V. Cianciolo, C. Crawford, T. Ito, P.R.

Huffman, E.B. Iverson, R. Mahurin, W.M. Snow, Fundamental Neutron Physics

Beamline at the Spallation Neutron Source at ORNL, August 4, 2014. 11

[10] R. Chad Gillis. 3He Ionization Chambers as Neutron Beam Monitors for

the NPDGamma Experiment. Masters Thesis, department of Physics and

103



Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada. June 2006.

12

[11] Nuclear Instruments and Methods in Physics Research A 671(2012)137143. The

implementation of a supermirror polarizer at the SNS fundamental neutron

physics beam line. S. Balascuta. 13

[12] J.J. Sakurai, Modern Quantum Mechanics, Second Edition. Addison—Wesley,

Copyright c© 2011. 14, 39

[13] Resonant Frequency Neutron Spin Flipper, Double Cosine Theta Coil Winding.

Unpublished paper written by Tomy, Graduate student of Chris Crawford. May

10, 2011. 16, 24

[14] n3He wikispaces website: https://n3he.wikispaces.com 19

[15] Guide Magnetic Field. A presentation prepared by Septiminu Balascuta, Stefan

Baessler, Jasmin Schaedler, Seppo Penttila, Ricardo Alacorn. October 16, 2010.

21

[16] Technical report on the mapping of the magnetic field for the NPDGamma

experiment at FNPB at the Spallation Neutron Source, Oak Ridge National

Laboratory. Jasmin Schaedler, Septiminu Balascuta, Stefan Baessler. Oak Ridge,

08/20/2010, updated February 2011. 21

[17] Installation and Alignment of the N3He Experiment. A Thesis Presented for

the Master of Science Degree. Eric Lee Plemons, August 2015, University of

Tennessee, Knoxville. 22

[18] P.-N. Seo et al. High-efficiency resonant rf spin rotator with broad phase space

acceptance for pulsed polarized cold neutron beams. Physical Review, Special

Topics—Accelerators and Beams, 11,084701 (2008) 24

104



[19] C.B. Hayes, Spin Flipper and Neutron Polarimetry for the n3He Experiment.

Comprehensive Exam Write-up, November 13, 2014. 24, 59

[20] F. Bloch, A. Siegert, Magnetic Resonance for non-rotating fields. Phys Rev

57:522-527, 1940. 40

[21] Model SR830 DSP Lock-in Amplifier. Stanford Research Systems, Sunnyvale,

CA c© 2011, Revision 2.5 45

[22] AWG3000 Series Quick Start User Manual. Copyright c© Tektronix, inc.

Beaverton, OR 49

[23] Crown D-75A Operation Manual c© 2007 by Crown Audio R© Inc. Ekhart, Indiana

49

[24] Model SR560 Low Noise Pre-amplifier User Manual. Stanford Research Systems,

Sunnyvale, CA c© 2011, Revision 2.9 50

[25] Matthew Musgrave, The NPDGamma Experiment and Polarimetry using a 3He

Spin Filter. Comprehensive Exam Write-up, July 18, 2011. 54, 57, 59, 76

[26] Matthew Martin Musgrave. Neutron Polarimetry with Polarized 3He for the

NPDGamma Experiment. Dissertation Presented for Doctor of Philosophy

Degree, University of Tennessee, Knoxville. May 2014. 54, 57, 59, 61, 73, 76,

79

[27] Mostafa Jon Dadras. Polarimetry Studies for the NPDGamma Experiment at

the SNS. Masters Thesis, University of Tennessee, Department of Physics and

Astronomy. December 2009. 54

[28] T.E. Chupp and M.E. Wagshul. Polarized, high density, gaseous 3He targets.

Physical Review C, Volume 36 Number 6, Dec 1987 55

[29] G Greene, A K Thompson, M S Dewey. A method for the accurate determination

of the polarization of a neutron beam using a polarized 3He spin filter.

105



Nuclear Instruments and Methods in Physcis Research, Section A: Accelerators,

Spectrometers, Detectors and associated equipment, 356(2-3):177-180, March

1995. 70

[30] TDS3000B Digital Phosphor Oscilloscopes 071-0957-03 User Manual.

Copyright c© Tektronix, Beaverton, OR

[31] C++ Language Tutorial Copyright c© cplusplus.com 2008, Juan Soulié
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Table A.1: Data summary for blue plot in figure 3.10. Field measurements inside
the spin flipper.

Distance(cm) Voltage(V)
1 0.002
2 0.004
3 0.004
4 0.065
5 0.216
6 0.217
7 0.217
8 0.216
9 0.216
10 0.216
11 0.216
12 0.216
13 0.216
14 0.216
15 0.216

Table A.2: Data summary for red plot in figure 3.10. Field measurements inside
the spin flipper.

Distance(cm) Voltage(V)
1 0.002
2 0.004
3 0.006
4 0.051
5 0.217
6 0.216
7 0.216
8 0.216
9 0.216
10 0.214
11 0.214
12 0.216
13 0.216
14 0.216
15 0.216
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Table A.3: Data summary for figure 4.12 showing beam average spin flipper
efficiency for individual wavelengths with standard deviation.

Item λ 〈εsf (λ)〉 SD
1 3.47715 0.996419 5.643E-04
2 3.54708 0.996812 5.556E-04
3 3.61702 0.997170 5.700E-04
4 3.68696 0.997242 6.573E-04
5 3.75689 0.997423 5.586E-04
6 3.82683 0.997527 5.420E-04
7 3.89677 0.997591 6.492E-04
8 3.96671 0.997632 5.553E-04
9 4.03664 0.997854 5.714E-04
10 4.10658 0.998065 6.212E-04
11 4.17652 0.998194 5.802E-04
12 4.24645 0.998268 6.544E-04
13 4.31639 0.998321 7.301E-04
14 4.38633 0.998349 7.489E-04
15 4.45627 0.998369 6.785E-04
16 4.5262 0.998381 8.210E-04
17 4.59614 0.998364 8.105E-04
18 4.66608 0.998440 8.597E-04
19 4.73601 0.998415 8.747E-04
20 4.80595 0.998396 9.032E-04
21 4.87589 0.998452 9.187E-04
22 4.94582 0.998497 1.015E-03
23 5.01576 0.998452 1.061E-03
24 5.0857 0.998473 9.803E-04
25 5.15564 0.998427 1.059E-03
26 5.22557 0.998266 1.061E-03
27 5.29551 0.998195 1.022E-03
28 5.36545 0.998122 9.991E-04
29 5.43538 0.998058 1.135E-03
30 5.50532 0.998129 1.124E-03
31 5.57526 0.998019 1.285E-03
32 5.6452 0.997829 1.320E-03
33 5.71513 0.997806 1.395E-03
34 5.78507 0.997691 1.341E-03
35 5.85501 0.997569 1.493E-03
36 5.92494 0.997557 1.491E-03
37 5.99488 0.997102 1.522E-03
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Table A.4: Data summary for figure 4.10 showing beam average polarization for
individual wavelengths with standard deviation.

Item λ 〈Pn(λ)〉 SD
1 3.47715 0.948897 1.556E-03
2 3.54708 0.949412 1.376E-03
3 3.61702 0.949681 1.261E-03
4 3.68696 0.949498 1.154E-03
5 3.75689 0.949271 1.203E-03
6 3.82683 0.949055 1.191E-03
7 3.89677 0.948787 1.368E-03
8 3.96671 0.948341 1.608E-03
9 4.03664 0.947710 1.113E-03
10 4.10658 0.947320 1.129E-03
11 4.17652 0.946733 1.138E-03
12 4.24645 0.945929 1.175E-03
13 4.31639 0.945062 1.277E-03
14 4.38633 0.944121 1.327E-03
15 4.45627 0.943109 1.409E-03
16 4.5262 0.942177 1.414E-03
17 4.59614 0.941172 1.451E-03
18 4.66608 0.940108 1.292E-03
19 4.73601 0.938981 1.376E-03
20 4.80595 0.937790 1.451E-03
21 4.87589 0.936642 1.540E-03
22 4.94582 0.935401 1.599E-03
23 5.01576 0.934078 1.684E-03
24 5.0857 0.932717 1.789E-03
25 5.15564 0.931348 1.896E-03
26 5.22557 0.930008 1.954E-03
27 5.29551 0.928521 2.037E-03
28 5.36545 0.927112 2.202E-03
29 5.43538 0.925580 2.234E-03
30 5.50532 0.924067 2.365E-03
31 5.57526 0.922494 2.475E-03
32 5.6452 0.920868 2.686E-03
33 5.71513 0.919234 2.797E-03
34 5.78507 0.917579 2.974E-03
35 5.85501 0.915804 3.083E-03
36 5.92494 0.913970 3.311E-03
37 5.99488 0.911836 3.585E-03
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Table A.5: Data summary indicating average background signal and standard
deviation measured by wire (1,5) over individual wavelengths. For comparison all
background entries are divided by 1.281 × 107 which is typical of a transmission
measurement when neutron spins are parallel to the polarized analyzer cell.

Item λ 〈BG(λ)〉 SD
1 3.47715 -8.106E-03 9.816E-04
2 3.54708 -8.121E-03 9.860E-04
3 3.61702 -8.140E-03 9.958E-04
4 3.68696 -8.161E-03 1.005E-03
5 3.75689 -8.170E-03 1.014E-03
6 3.82683 -8.168E-03 1.017E-03
7 3.89677 -8.163E-03 1.018E-03
8 3.96671 -8.142E-03 1.015E-03
9 4.03664 -8.121E-03 1.012E-03
10 4.10658 -8.105E-03 1.005E-03
11 4.17652 -8.091E-03 9.987E-04
12 4.24645 -8.083E-03 9.945E-04
13 4.31639 -8.091E-03 9.909E-04
14 4.38633 -8.109E-03 9.915E-04
15 4.45627 -8.126E-03 9.966E-04
16 4.5262 -8.149E-03 9.990E-04
17 4.59614 -8.166E-03 1.004E-03
18 4.66608 -8.175E-03 1.007E-03
19 4.73601 -8.175E-03 1.011E-03
20 4.80595 -8.162E-03 1.015E-03
21 4.87589 -8.145E-03 1.014E-03
22 4.94582 -8.122E-03 1.013E-03
23 5.01576 -8.099E-03 1.007E-03
24 5.0857 -8.084E-03 1.005E-03
25 5.15564 -8.082E-03 1.003E-03
26 5.22557 -8.092E-03 9.998E-04
27 5.29551 -8.108E-03 9.975E-04
28 5.36545 -8.132E-03 9.969E-04
29 5.43538 -8.158E-03 9.990E-04
30 5.50532 -8.178E-03 9.971E-04
31 5.57526 -8.190E-03 9.980E-04
32 5.6452 -8.195E-03 1.001E-03
33 5.71513 -8.185E-03 9.967E-04
34 5.78507 -8.167E-03 9.968E-04
35 5.85501 -8.139E-03 9.869E-04
36 5.92494 -8.113E-03 9.873E-04
37 5.99488 -8.096E-03 9.819E-04
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Figure A.1: Plots showing the y-component of the magnetic holding field BY1 read
by a magnetometer covering most of 2015. Plots indicate a slight upward trend in the
field throughout the course of the experiment in addition to sudden changes of up to
50 mG. Two large breaks in data production are caused by SNS summer shut down
(6/24 - 8/14) and failed mercury target (9/24-10/9). Magnetic field data is logged
by the DAQ computer every 12 seconds so plots are a made from samples compiled
approximately once every 2-3 days.
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[01] for (k=0; k < intensity; k++)
[02] {
[03] z = myran.doub();
[04] zi = -log(1-z)/alpha;
[05] if(zi < 33.83)
[06] {
[07] theta = pi*myran.doub();
[08] phi = 2*pi*myran.doub();
[09]
[10] sigmax = 1.2726 + zi*0.0093;
[11] sigmay = 1.7221 + zi*0.01257;
[12]
[13] xzm = 3.55*(1 - 0.00262*sp*zi);
[14] xzp = 10*(1+ 0.00186*sp*zi);
[15] yzm = 4.55*(1- 0.00277*sp*zi);
[16] yzp = 8.2*(1 + 0.003073*sp*zi);
[17]
[18] xo = myran.doub();
[19] yo = myran.doub();
[20] xr = xzp*myran.doub() + xzm;
[21] yr = yzp*myran.doub() + yzm;
[22] x = 2.0*xo - 1.0;
[23] y = 2.0*yo - 1.0;
[24] ww = x*x + y*y;
[25] ww = sqrt((-2.0*log(ww))/ww);
[26] xi = sigmax*x*ww + xr;
[27] yi = sigmay*y*ww + yr;
[28]
[29] if(yi >= yzm && yi <= yzp + yzm && xi >= xzm && xi <= xzp + xzm)
[30] {
[31] l= lproton;
[32] grid41(xi, yi, zi, theta, phi, l, lproton);
[33] l= ltriton;
[34] grid42(xi, yi, zi, pi - theta, pi + phi, l, ltriton);
[35] }
[36] }
[37] }

Figure A.2: Lines of code generate events in the ion chamber which decay
exponentially with coordinate zi along the length of the ion chamber.
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