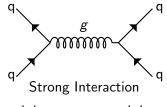
n3He: A Measurement of Parity Violation in the Capture of Cold Polarized Neutrons on He-3

Mark McCrea University of Manitoba for the n3He Collaboration

October 24

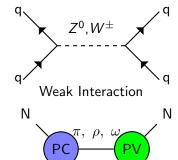
Canadian Contributions Supported with Funding Provided by NSERC and CFI

- 1 Introduction
- 2 Motivation
- **3** Spallation Neutron Source
- 4 Apparatus
- **5** Current Status

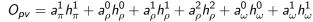

Introduction


$$\vec{n} + ^{3}He \rightarrow p + T + 765keV$$

Beam $\rightarrow n \rightarrow + ^{3}He \rightarrow p \rightarrow p \rightarrow + ^{7}He \rightarrow +$


n3He probes the low energy strong interaction, using the weak interaction by measuring the parity violating directional asymmetry in the proton recoil from the reaction

Theoretical Motivation



Uncertain HWI DDH Meson Exchange Parameters:

DDH Parameterization

Strong

Weak

Esimation of the n3He Observable

From a full four-body calculation of strong scattering wave functions

- $A_p^{\vec{n},^3 He}(th.) \approx (-9.4 \rightarrow 2.5) \times 10^{-8}$
- n3He aims to measure this to 2×10^{-8}

DDH Weak	(A_Z^P) n^3 H $e o tp$
Coupling	
a_{π}^{1}	-0.189
$a_{ ho}^{0}$	-0.036
$a_{ ho}^1$	0.019
a_{ρ}^2	-0.006
a_{ω}^{0}	-0.0334
a_ω^1	0.0413

M. Viviani, R. Schiavilla, Phys. Rev. C. 82 044001 (2010) L. Girlanda et al. Phys. Rev. Lett. 105 232502 (2010)

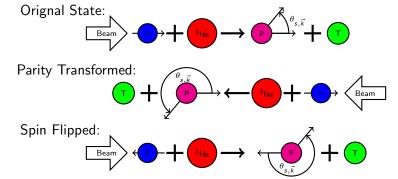
Importance of the n3He Experiment

$$A_{\rho} = -0.189 \mathbf{h}_{\pi}^{\mathbf{1}} - 0.036 \mathbf{h}_{\rho}^{\mathbf{0}} + 0.019 h_{\rho}^{\mathbf{1}} - 0.006 \mathbf{h}_{\rho}^{\mathbf{2}} - 0.0334 \mathbf{h}_{\omega}^{\mathbf{0}} + 0.0413 h_{\omega}^{\mathbf{1}}$$

- $\Delta I = 1$ are not important due to small contribution
- 4 parameters remain $(\mathbf{h}_{\pi}^{1}, \mathbf{h}_{\rho}^{0}, \mathbf{h}_{\rho}^{2}, \mathbf{h}_{\omega}^{0})$

Using:

- ¹⁸F measurement
- elastic p-p scattering at two energies
- odd-proton nuclear measurements
- NPDGamma

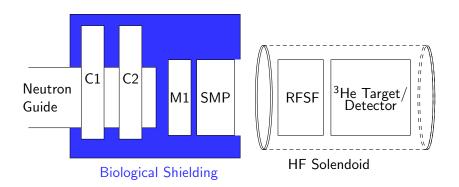

along with the n3He result the system can be over constrained to check the model.

A Brief Introduction to Parity
Under a parity transformation P polar vectors such as the momentum transform as

 $P(\vec{k}_n) \to -\vec{k}_n \quad {
m and} \quad P(\vec{k}_p) = -\vec{k}_p$ but axial vectors, such as the neutron spin, remain unchanged

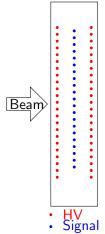
$$P(\vec{s}_n) \rightarrow \vec{s}_n$$

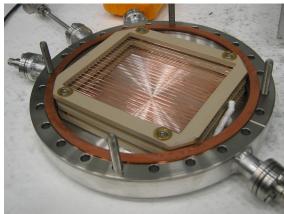
Spallation Neutron Source

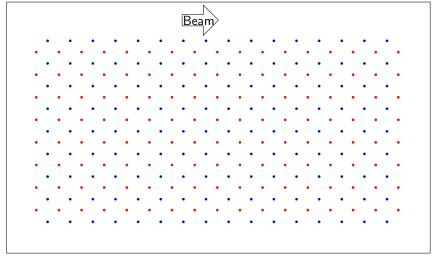

- Located at the Oak Ridge National Laboratory (ORNL) in Tennessee
- 60 Hertz pulsed spallation source
- n3He will located at the FnPB
- 20K liquid hydrogen moderator for cold neutron beam lines

Neutron Pulse - Unchopped

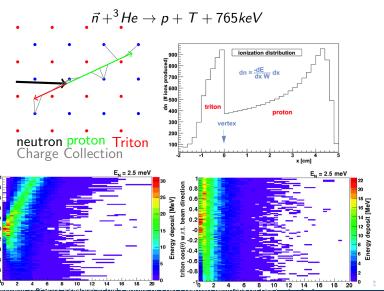
n3He Schematic Diagram




FnPB Cave with NPDGamma Apparatus Installed


Prototype Monitors

n3He Target Chamber



HV 17 HV Frames with 8 wires each

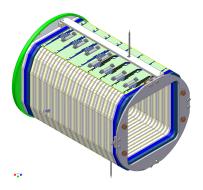
Signal 16 signal Frames with 9 wires each

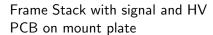
Proton Asymmetry in Chamber

proton cos(θ) w.r.t.

roduction Motivation Spallation Neutron Source **Apparatus** Current Statu

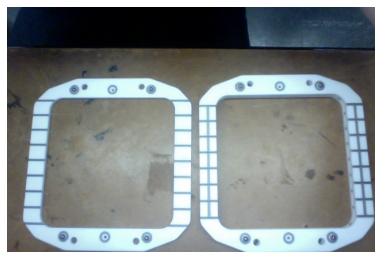
Target Housing




- 10" conflat end flanges
- windows are 1mm thick Al
- 4 data feed thrus

- 2 gas feed thrus
- 2 HV feed throughs

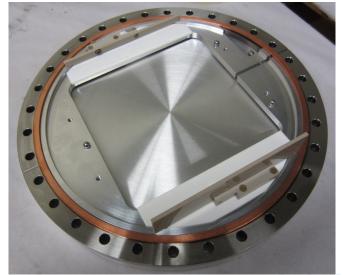
Target CAD Drawing



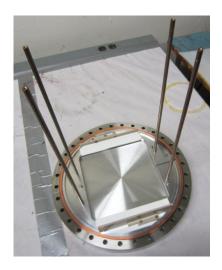
Chamber exterior with all flanges in place.

roduction Motivation Spallation Neutron Source **Apparatus** Current Status

Target Frames


Signal Frame

HV Frame


roduction Motivation Spallation Neutron Source **Apparatus** Current Statu

Flange Mount and Shielding

Wire Frame Alignment

- mount plate seats in flange
- 4 compression rods
- 3 point mount sets frame spacing and alignment

Test Assembly of Frame Stack

- 17 HV frames
- 16 signal frames
- 144 signal wires
- approximate 14 inch height

roduction Motivation Spallation Neutron Source **Apparatus** Current Status

Signal Feed Thrus and Cables

- 4 Signal Feed Thrus
- Two 25 pin Sub-D cables per flange
- maximum 200 connections, 144 used.
- kapton, PEEK, macor, and copper materials

Current Status

- All parts are on hand.
- Frame Wiring to start end of October.
- Chamber planned to be assembled by end of year
- Testing with electronics to start next year.

n3He Collaboration

Duke University, Triangle Universities Nuclear Laboratory

Pil-Neo Seo

Istituto Nazionale di Fisica Nucleare, Sezione di Pisa

Michele Viviani

Oak Ridge National Laboratory

- Seppo Pentill
- David Bowman

University of Kentucky

- Chris Crawford
- Kabir Latiful
- Aaron Sprow

Western Kentucky University

Ivan Novikov

University of Manitoba

- Michael Gericke
- Shelley Page
- WTH. Van Oers
- Rob Mahurin
- V. Tvaskis
- Mark McCrea

Universidad Nacional Autnoma de Mxico

Libertad Baron

University of New Hampshire

John Calarco

University of South Carolina

- Vladimir Gudkov
- Young-Ho Song

University of Tennessee

- Nadia Fomin
 - Geoff Greene
 - S Kucuker
 - C 11
 - C. Hayes

University of Tennessee at Chattanooga

Josh Hamblen

University of Virginia

S. Baessler

