Correlations Calculation

Hopefully Finally There !



Correlation Calculation : Through Diagonalization

The Recipe :

1. Calculate the physics asymmetry :

For a run, calculate the physics asymmetry between two pulses of any wire. The yield in the asym-
metry has to be sum over detectors normalized and pedestal subtracted.
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2. Calculate the covariance out of physics asymmetry :
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So C;; is a 144x144 matrix and by construction its a symmetric matrix.

3. Diagonalize the covariance matrix :
Noting the fact that matrix C is symmetric, find out a matrix S such that —

STCS =D (24)

Where D is a diagonal matrix wit diagonal elements

D = diag(c},05,05,05...,05,,) (25)

The matrix S is the transformation matrix to be used to transform back and forth between the
correlated and uncorrelated basis(reference frame).

The matrix S can be built up from the eigenvectors of C as its column, so that D ends up with
eigenvalues along the diagonal.



4. Transform data to new basis:
Transform all the wire physics asymmetry (calculated over the entire data set) in the new frame
using the matrix S :

Where S;; is the transpose of S.

5. Transform the formalism (fit) :

Now in the rotated {uncorrelated) frame, the the y — r map is not flat any more. Transforming
everything we have :

Mean :
B =(K'D'K)y'K'"D'B (39)
Uncertainty :
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and D is the covariance matrix.
B=5"4 (43)
K=5"X (d4)
Since A, or B; is itself a mean of n pulse pairs . so D71 is in fact D~! = rjmy{ff: e e PO o
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in our analysis.



6. Quote the result :
S0 we guote the final result as

Briw — Rtot 4 A Rtot [dD)

Origin of The Problem that failed previous attempts

e Our Previous attempts failed because of the following reason ---
— The matrix elements that correspond to center wires or bad wires made
the matrix nearly singular.
— Inverting or diagonalizing a matrix with few elements very very small gave
rise to unexpected outcome.

* The result seems to make sense if we just work with the remaining 126 wires
( with 16 center and 2 bad wires excluded).

* Here the result is presented with “sum over detectors” normalized Physics
asymmetry following the approach suggested by David.
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Eigenvalues from diagonalization
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Correlated Physics Asymmetry (Run#26230)

x? / ndf 164.9/ 125
p0O 3.979e-06+ 1.102e-06
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Correlated vs Corrected (Run : 26230)

Chi2 = 164.884
= 125
3.97886e-06 +/- 1.10173e-06
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Mean : 4.64902e-06
Uncertainty : 1.74034e-06
Chi Square: 182.686
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Correlated vs Corrected (Run : 26231)

Chi2 = 107.944
NDf = 125
po =-4.31872e-06 +/- 1.10217e-06

Mean : -4.96752e-06
Uncertainty : 1.70662e-06
Chi Square : 163.429
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