Synchronization tests with new ACQ1002 modules

test signal and the algorithm

Header – serving as T₀

Our high precision pulse generator simultaneously generates 60 Hz trigger signal (for the ADC "trigger" input) and synchronized to it RC shaped square pulse with the following parameters:

- Leading/Trailing edge = 100 μs
- WIDTH (incl. Le. edge) = 320 μ s

For every pulse:

- 1.) We fit middle part (3 bins) of the Leading edge by a straight line and calculate the y=0 intercept
- 2.) We calculate $\Delta T = T_1 T_0$ for every pulse

We looked first at 1000 pulses and then at total of 6000 pulses

§ Units on X (time) axis throughout the talk are in 1/64kHz ≈ 15.6 μsec

Individual ΔT vs. pulse number (SYNC)

As can be seen in sync case ΔT distribution "drifts" systematically in one direction. After roughly a cycle of 500 triggers it "resets" back and does the same thing all over again.

Our initial guess was that the "drift per pulse" was only 1 time tick, i.e. 1/32MHz.

However upon further inspection we noticed that it is not quite true. The shift can be up to 2-3 ticks in both directions (up or down) as demonstrated on the next slide

Looking at more data: 6000 pulses

Last night we actually looked at more data and noticed that fluctuation of "the drift" from pulse to pulse gets larger.

ΔT between two consecutive pulses (SYNC)

The distribution of the ΔT difference between two consecutive pulses show the overall "drift" distribution from pulse to pulse.

An negative side (down tick direction) it peaks at roughly -1.0 * 1/32MHz.

At positive side (up tick direction) it peaks at roughly about + 2.0 * 1/32 MHz

δ T distribution vs. pulse-#

 ΔT_{i+1} - ΔT_i distribution

