The n-³He Experiment at SNS A Study of Hadronic Weak Interaction

Latiful Kabir

University of Kentucky for the n-³He Collaboration

DNP 2015 Meeting Santa Fe, NM, October 29th 2015

The n³He Experiment at SNS

Outline

- The n-³He experiment
- Motivation
- Experimental Setup

Major Components

- RFSF
- Ion Chamber
- DAQ & Pre-amps
- Preliminary Data
- -Asymmetry Calculation
- -LR Asymmetry
- -UP Asymmetry

<u>Outline</u>

 \Box The n-³He experiment - Motivation -Experimental Setup Major Components -RFSF -lon Chamber -DAQ & Pre-amps Preliminary Data - Asymmetry Calculation - LR Asymmetry - UD Asymmetry **Current Status**

The n³He Experiment at SNS

Outline

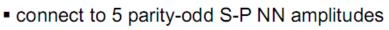
- The n-³He experiment
- Motivation
- Experimental Setup

Major Components

- RFSF
- Ion Chamber
- DAQ & Pre-amps
- Preliminary Data
- -Asymmetry Calculation
- -LR Asymmetry
- -UP Asymmetry

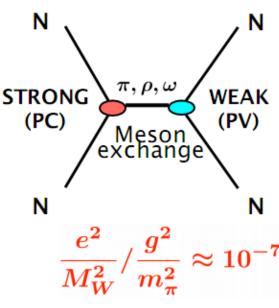
Motivation

- Parity violation (PV) is NOT well-understood for hadronic systems.
- But studies of PV in hadronic systems offer a unique probe of nucleon structure.
- Non-perturbative regime makes calculations and experiments challenging.


DDH Model: The HWI is specified by coupling constants at the vertex, There are six unique coupling constants. $(\pi^{\pm}, \rho, \omega)$

B.Desplanques, J.F.Donoghue, and B.R.Holstein, Ann.Phys. 124,449(1980).

Effective Field Theory:


- developed by Holstein, Ramsey-Musolf, van Kolck, Zhu and Maekawa
- model-independent

 NN potentials are expressed in terms of 12 parameters, whose linear combinations give us 5 low energy coupling constants

Lattice QCD :

-J Wasem PRC C85(2012)

The n³He Experiment at SNS

Outline

The n-³He experiment - Motivation

- Experimental Setup

Major Components

- RFSF
- Ion Chamber
- DAQ & Pre-amps
- Preliminary Data
- -Asymmetry Calculation
- -LR Asymmetry
- -UP Asymmetry

Current Status

 $\lambda_t, \lambda_s^{I=0,1,2}, \rho_t$

+0.058

 $h_{\pi NN}^{1} = 1.099 \pm 0.505$

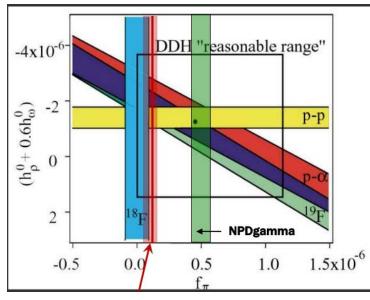
Different hadronic nuclear reactions have varying sensitivity to each coupling. The goal of the HWI program is to measure enough different reactions to solve for each of the coupling constants.

	np Α _γ	nD Α _γ	n ³ He A _p	np 🗄	ηα φ	pp A _z	$\mathbf{p} \alpha \mathbf{A}_{\mathbf{z}}$
f_{π}	-0.11	0.92	-0.18	-3.12	-0.97		-0.34
$h_{\rm r}^{0}$		-0.50	-0.14	-0. 23	-0.32	0.08	0.14
<i>h</i> _r ¹	-0.001	0.10	0.027		0.11	0.08	0.05
h _p ²		0.05	0.0012	-0.25		0.03	
h_{ω}^{0}		-0.16	-0.13	-0. 23	-0.22	-0.07	0.06
h_{ω}^{-1}	-0.003	-0.002	0.05		0.22	0.07	0.06

Experiment at SNS Outline The n-³He experiment - Motivation - Experimental Setup

The n³He

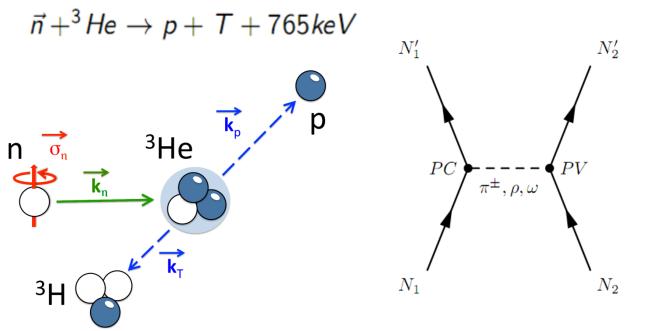
Major Components


- RFSF
- Ion Chamber
- DAQ & Pre-amps

Preliminary Data

- -Asymmetry Calculation
- -LR Asymmetry
- -UP Asymmetry

Current Status


 $A_n^{n^3 He} = -0.189 f_{\pi} - 0.036 h_{\rho}^0 - 0.033 h_{\omega}^0$ Viviani et al, PRC 82 (2010), 044001

4

The n-³He Experiment

High-precision measurement motivated to probe the hadronic weak interaction by measuring the parity violating asymmetry of the proton in the reaction-

$$\sigma = \sigma_0 \left(1 + \sigma_n \cdot \mathbf{k}_p A_{pv} + \mathbf{k}_n x \sigma_n \cdot \mathbf{k}_p A_{pc} \right)$$

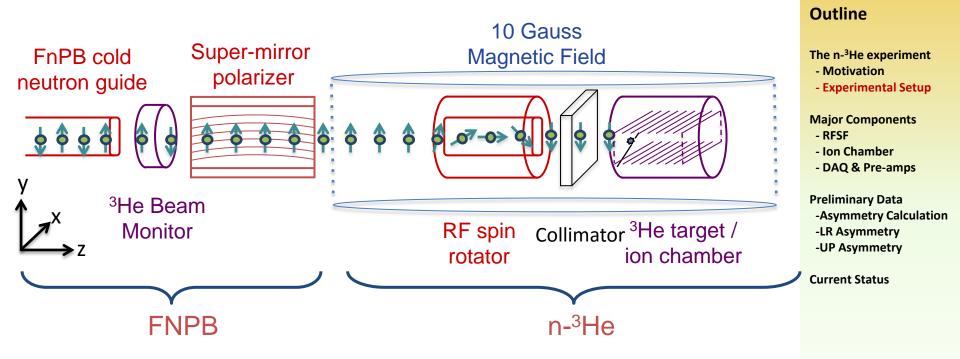
Expected to be extremely small (of the order 10⁻⁷)
Goal is to measure an asymmetry in the reaction to a precision of 2 x 10⁻⁸

The n³He Experiment at SNS

Outline

The n-³He experiment - Motivation

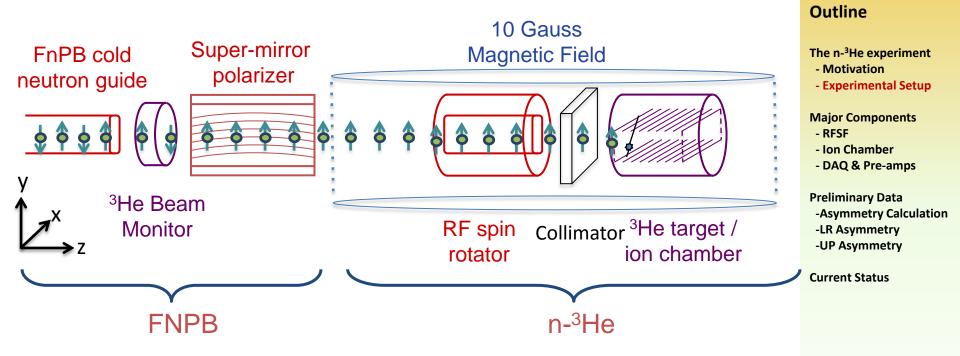
- Experimental Setup


Major Components

- RFSF
- Ion Chamber
- DAQ & Pre-amps

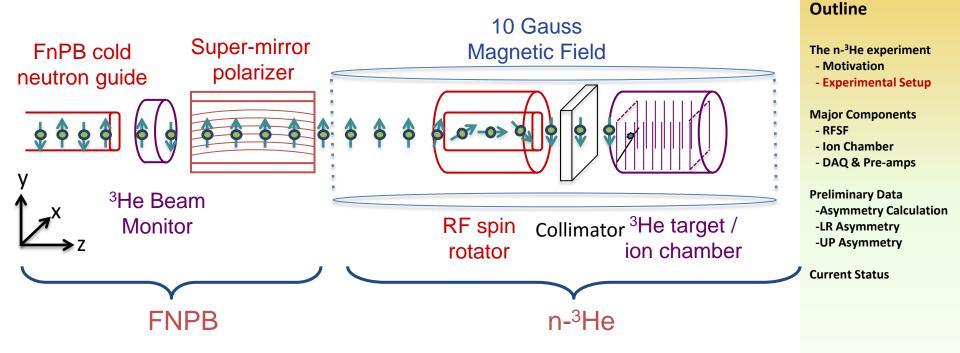
Preliminary Data

- -Asymmetry Calculation
- -LR Asymmetry
- -UP Asymmetry


Commissioned at spallation neutron source (SNS) facility of Oak Ridge National Laboratory.
Uses pulsed neutrons at 60 Hz from SNS.

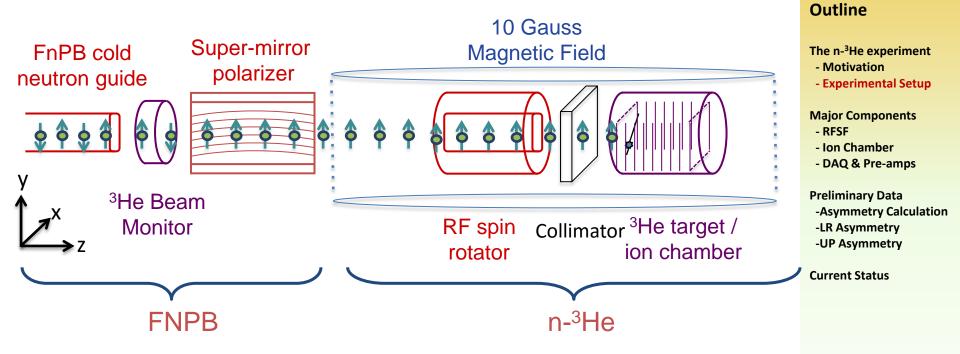
The n³He

SNS


Commissioned at spallation neutron source (SNS) facility of Oak Ridge National Laboratory.
Uses pulsed neutrons at 60 Hz from SNS.

The n³He

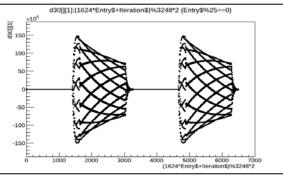
SNS

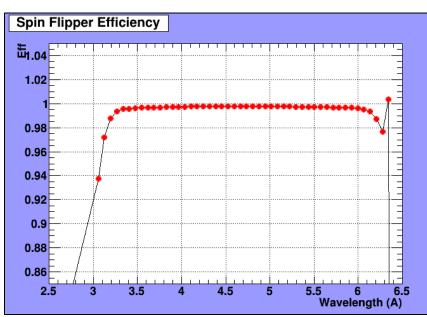

Commissioned at spallation neutron source (SNS) facility of Oak Ridge National Laboratory.
Uses pulsed neutrons at 60 Hz from SNS.

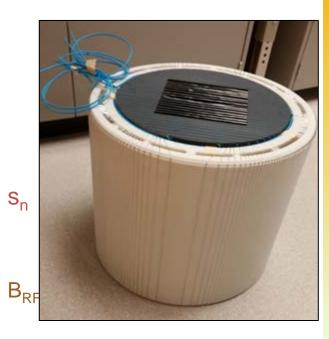
The n³He

SNS

Commissioned at spallation neutron source (SNS) facility of Oak Ridge National Laboratory.
Uses pulsed neutrons at 60 Hz from SNS.




The n³He


SNS

<u>RFSF</u>

- The neutrons enter the experiment with a transverse polarization.
- Spin flipper with transverse windings allows for both longitudinal and transverse spin holding field rotation.

Details in talk by Chris Hayes (HF.00003, Friday @ 8:30)

The n³He Experiment at SNS

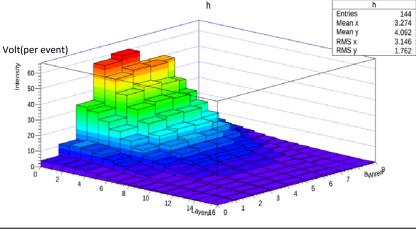
Outline

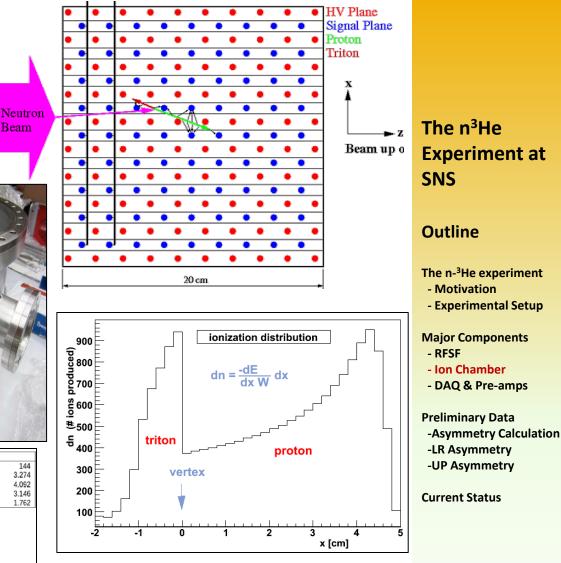
- The n-³He experiment - Motivation
- Experimental Setup

Major Components

- RFSF
- Ion Chamber
- DAQ & Pre-amps

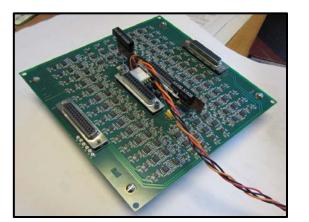
Preliminary Data


- -Asymmetry Calculation
- -LR Asymmetry
- -UP Asymmetry

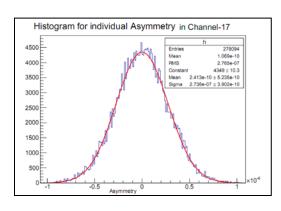

Ion Chamber

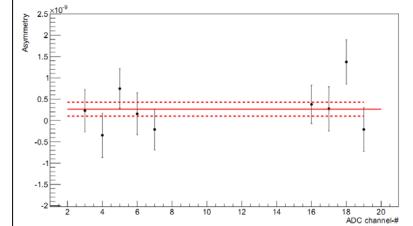
- Filled with ³He at 0.5 atm
- 17 HV Frames with 8 wires
- 16 Signal Frames with 9 wires

Beam



Details in talk by Mark McCrea (HF.00002, Friday @ 8:42)


DAQ and Pre-amps



Analysis of 5 hour of data at 25KHz shows that-Instrumental Asymmetry = 2.64 x 10⁻¹⁰ ± 1.64 x 10⁻¹⁰

The n³He Experiment at SNS

Outline

The n-³He experiment

- Motivation
- Experimental Setup

Major Components

- RFSF
- Ion Chamber
- DAQ & Pre-amps

Preliminary Data

- -Asymmetry Calculation
- -LR Asymmetry
- -UP Asymmetry

Asymmetry Calculation

-- Pulses around dropped pulses

- Pair of events (one up and one down) considered to form each asymmetry for each wire.
- Each detector signal is normalized by sum of all the detector signals for that event.
- Asymmetry for pair of events,

$$A_{K} = \frac{Y_{+}^{\kappa} - Y_{-}^{\kappa}}{Y_{+}^{\kappa} + Y_{-}^{\kappa}} \qquad K = pair of events index$$

Physics asymmetry for each wire is calculated using,

Details on GF in talk by Christopher Coppola (HF00001,Friday @8:30)

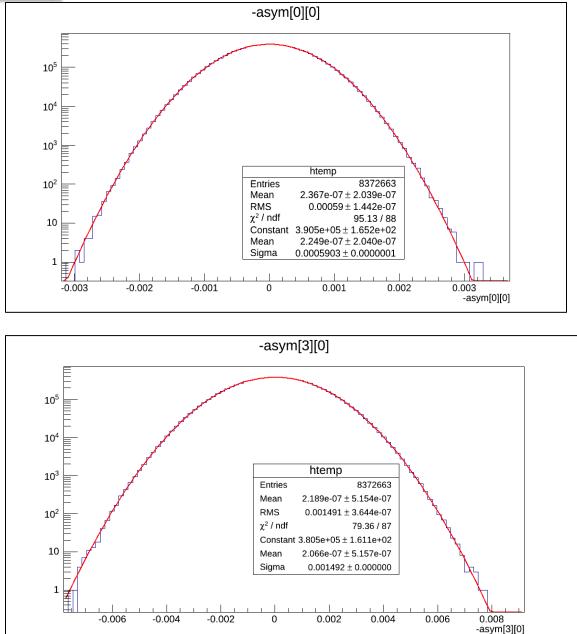
$$\alpha_{\kappa} = \frac{1}{G_{\kappa}} \frac{Y_{+}^{\kappa} - Y_{-}^{\kappa}}{Y_{+}^{\kappa} + Y_{-}^{\kappa}} \quad \text{ K= wire index}$$

The n³He Experiment at SNS

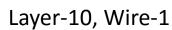
Outline

- The n-³He experiment - Motivation
- Experimental Setup

Major Components


- RFSF
- Ion Chamber
- DAQ & Pre-amps
- Preliminary Data
- -Asymmetry Calculation
- -LR Asymmetry
- -UP Asymmetry

Current Status


And error , $\delta \alpha_k = \frac{1}{|Gk|} \delta A_k$ Where G_k is the geometric factor . The final asymmetry is obtained after correcting for correlations.

LR Asymmetry

Runs Considered : 684

Layer-1, Wire-1

The n³He

SNS

Outline

- RFSF

Experiment at

The n-³He experiment

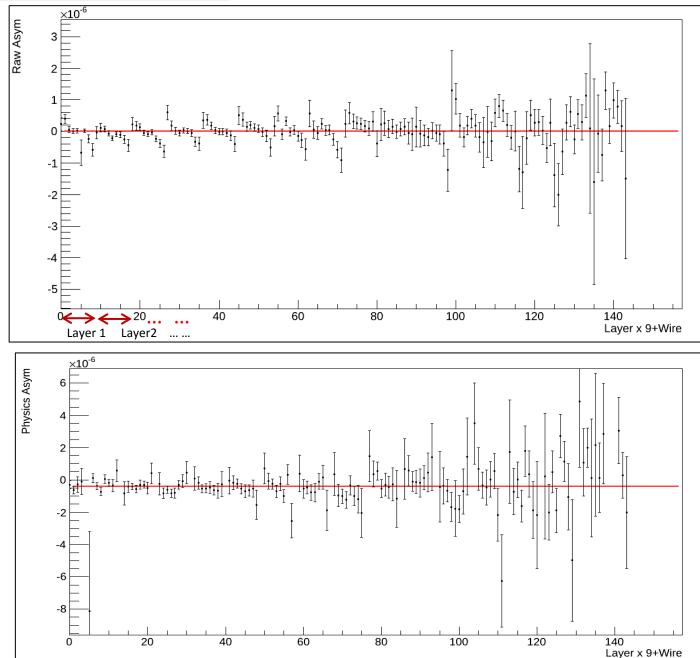
- Experimental Setup

Major Components

- DAQ & Pre-amps

-Asymmetry Calculation

- Ion Chamber


Preliminary Data

-LR Asymmetry -UP Asymmetry

Current Status

- Motivation

LR Asymmetry

The n³He Experiment at SNS

Outline

- The n-³He experiment
- Motivation
- Experimental Setup

Major Components

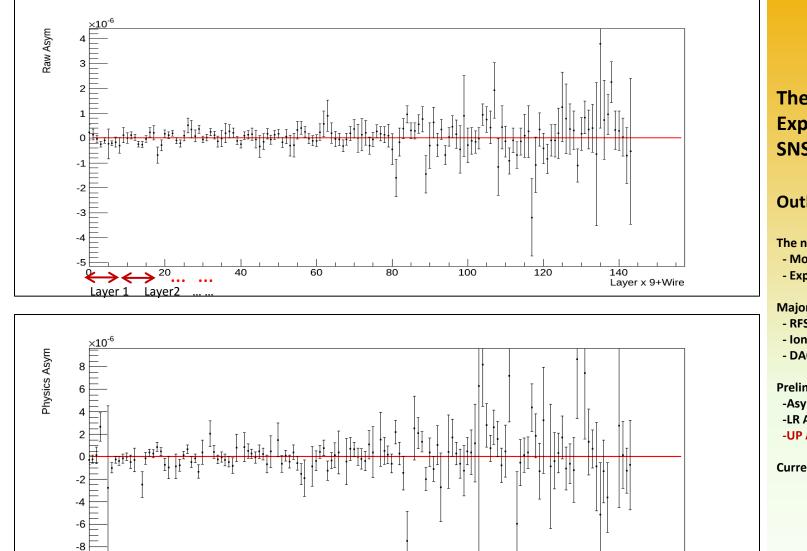
- RFSF
- Ion Chamber
- DAQ & Pre-amps

Preliminary Data

- -Asymmetry Calculation
- -LR Asymmetry
- -UP Asymmetry

D Asymmetry

-10 -12 -14


> 20

Layer 1 Layer 2

... ... 40

60

Runs Considered 280

80

100

120

140

Layer x 9+Wire

The n³He **Experiment** at **SNS**

Outline

The n-³He experiment - Motivation

- Experimental Setup

Major Components

- RFSF
- Ion Chamber
- DAQ & Pre-amps

Preliminary Data

- -Asymmetry Calculation
- -LR Asymmetry
- -UP Asymmetry

Current Status

- Successfully finished beam cycle-1 data taking phase with data having 2050 hours of beam with an average power of 1MW (17500 runs).
- □ This includes data both for PC and PV asymmetry.
- Data taking for second beam cycle is going on, with 950 hours of beam already taken.
- $\Box \text{ This gives desired statistics according to, } \delta A = \frac{\sigma_d}{P\sqrt{N}}$

Where, P=99%, $\sigma_d = 3.4$, N=1.4x10¹⁰ n/sec x 3000 hr Preliminary analysis shows current precision < 2 x 10⁻⁸ Data taking will continue till the end of the year.

The n³He Experiment at SNS

Outline

The n-³He experiment - Motivation

- Experimental Setup

Major Components

- RFSF

- Ion Chamber

- DAQ & Pre-amps

Preliminary Data

- -Asymmetry Calculation
- -LR Asymmetry
- -UP Asymmetry

n-³He Collaboration

INSTITUTION	RESEARCHER	CATEGORY	2014 EFFORT					
DUKE UNIVE	RSITY, TRIANGLE UNIV	ERSITIES NUCLEAR	LABORATORY					
	PIL-NEO SEO	RESEARCH STAFF	10					
ISTITUTO NAZIONALE DI FISICA NUCLEARE, SEZIONE DI PISA								
	MICHELE VIVIANI	RESEARCH STAFF	15					
OAK RIDGE	NATIONAL LABORATOR	Y						
	SEPPO PENTILLÄ	RESEARCH STAFF	70					
	DAVID BOWMAN	RESEARCH STAFF	70					
	VINCE CIANCIOLO	RESEARCH STAFF	10					
UNIVERSITY	OF KENTUCKY							
	CHRIS CRAWFORD	FACULTY	50					
	KABIR LATIFUL	GRAD STUDENT	100					
WESTERN KI	ENTUCKY UNIVERSITY							
	IVAN NOVIKOV	FACULTY	70					
	TBD	UNDERGRADUATE	100					
UNIVERSITY	OF MANITOBA							
	MICHAEL GERICKE	FACULTY	30					
	V. TVASKIS	POSTDOC	10					
	MARK MCCREA	GRAD STUDENT	100					
	CARLOS OLGUIN	GRAD STUDENT	100					
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO								
	LIBERTAD BARON	FACULTY	50					
	ANDRÉS NARANJAS	GRAD STUDENT	100					
UNIVERSITY	OF NEW HAMPSHIRE							
	JOHN CALARCO	FACULTY	50					
University of South Carolina								
	VLADIMIR GUDKOV	FACULTY	5					
	YOUNG-HO SONG	POSTDOC	5					
UNIVERISTY	OF TENNESSEE							
`	GEOFF GREENE	FACULTY	30					
	NADIA FOMIN	FACULTY	30					
	IRAKLI GARRIBALDI	POSTDOC	50					
	CHRIS HAYES	GRAD STUDENT	100					
	CHRIS COPPOLA	GRAD STDUENT	100					
UNIVERISTY	UNIVERISTY OF TENNESSEE AT CHATTANOOGA							
•	JOSH HAMBLEN	FACULTY	75					
	CALEB WICKERSHAM	UNDERGRADUATE	100					
UNIVERSITY	OF VIRGINIA							
	S. BAESSLER	FACULTY	20					

The n³He Experiment at SNS

Outline

- The n-³He experiment
- Motivation
- Experimental Setup
- **Major Components**
- RFSF
- Ion Chamber
- DAQ & Pre-amps
- Preliminary Data
- -Asymmetry Calculation
- -LR Asymmetry
- -UP Asymmetry