Spin Flipper and Neutron Polarimetry for the n³He Experiment

Christopher Hayes April 6th 2016

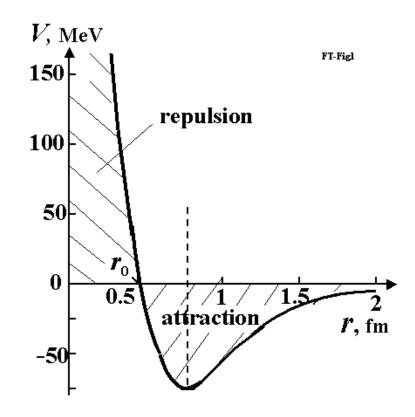
Outline

- 1. Theoretical Background
- 2. SNS neutrons/Experiment Overview
- 3. Spin Flipper
- 4. Neutron Polarimetry

Interaction of Neutrons with ³He

$$\vec{n} + {}^{3}He = {}^{3}H + p + 764 \,\mathrm{keV}$$

• Binding energy of He-3 is less than Binding energy of Triton


$$E_b[T] = (M_p + 2M_n - M_T)c^2$$
$$E_b[He3] = (M_n + 2M_p - M_{He3})c^2$$

$$K = (M_{He3} + M_n - M_T - M_p)c^2 = 764 \,\mathrm{keV}$$

 $K_p = 572.7 \,\mathrm{keV}$ $K_T = 191.3 \, \text{keV}$

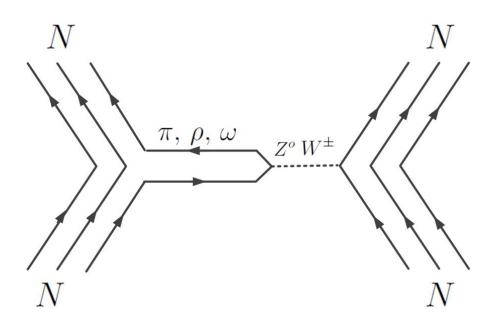
Theory of the Nuclear Force

- Also known as the residual Strong Interaction
- Attractive force mediated by the exchange of light virtual mesons $~\pi,~
 ho,~\omega$
- Non-central force (Tensor couplings)
- Spin-Dependent

Differential Cross-Section

$$\frac{d\sigma}{d\Omega} = \frac{1}{4\pi} \left[1 + \varepsilon_{pc} + \varepsilon_{pv} + \cdots \right]$$

$$\varepsilon_{pc} = \alpha_{pc} \langle \sigma \rangle \cdot (\mathbf{k}_n \times \mathbf{k}_p) \quad \underset{\text{asymmetry}}{\mathbf{L/R}}$$

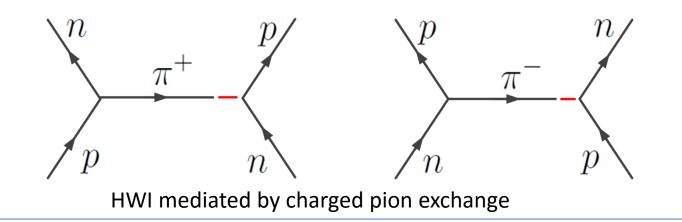

$$\underbrace{\mathbf{Neutron \ beam \ direction}}_{\mathbf{k}_p} \quad \underbrace{\mathbf{k}_p}_{\mathbf{k}_n} \quad \overbrace{\mathbf{k}_n}_{\mathbf{k}_n}$$

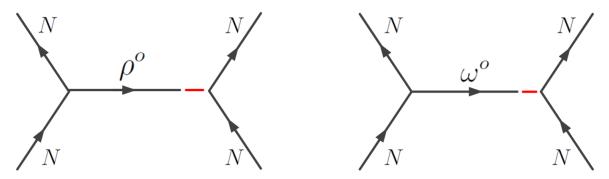
$$\varepsilon_{pv} = \alpha_{pv} \langle \sigma \rangle \cdot \mathbf{k}_p \quad \underbrace{\mathbf{U/D}}_{\text{asymmetry}}$$

Theory of the Hadronic Weak Interaction

 $+ a_{\rho}^{0} \cdot h_{\rho}^{0} + a_{\rho}^{1} \cdot h_{\rho}^{1} + a_{\rho}^{2} \cdot h_{\rho}^{2} + a_{\omega}^{0} \cdot h_{\omega}^{0} + a_{\omega}^{1} \cdot h_{\omega}^{1}$

- HWI described by the Meson Exchange Model.
- Mediators $\pi, \ \rho, \ \omega$ allowed to decay into carriers of the weak force before coupling to second vertex




 Theory requires 6 coupling constants which must be measured experimentally.

 $A = a_{\pi}^{1}$

Feynman Diagrams which determine A_p

$$A_p = -0.18 \cdot h_\pi^1 - 0.14 \cdot h_\rho^0 - 0.13 \cdot h_\omega^0$$

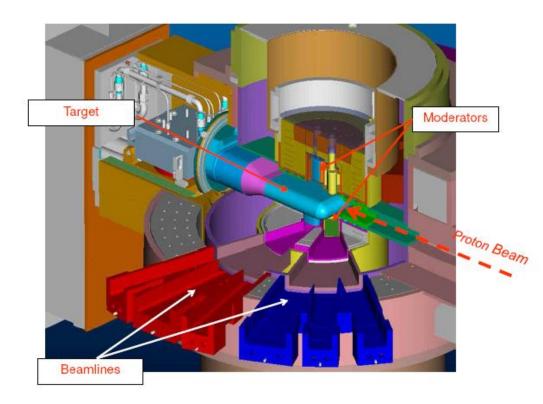
HWI mediated by the exchange of heavy neutral vector mesons

Observables and Coupling Coefficients

- n³He is one of several experiments designed to measure coupling constants of the DDH model
- Primary goal of NPDGamma experiment is to measure the parity violating Gamma asymmetry:

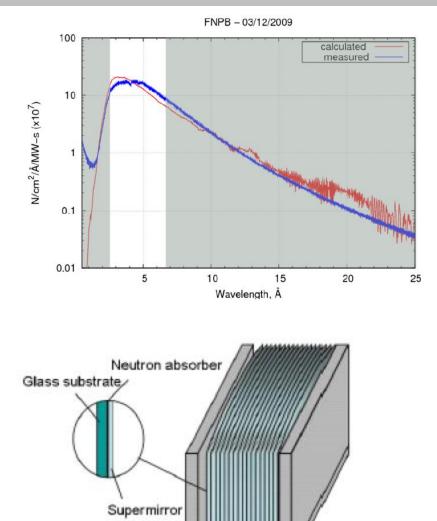
$$\vec{n} + p \to d + \gamma$$

 $A_{\gamma} \simeq -0.107 h_{\pi}^1$

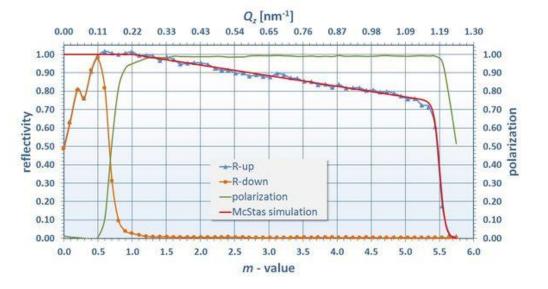

	npA_{γ}	nDA_γ	n³He A _p	np ø	nα φ	pp A _z	$p\alpha A_z$
f_{π}	-0.11	0.92	-0.18	-3.12	-0.97		-0.34
h_{ρ}^{0}		-0.50	-0.14	-0.23	-0.32	0.08	0.14
h_{ρ}^{-1}	-0.001	0.10	0.027		0.11	0.08	0.05
h_{ρ}^{2}		0.05	0.0012	-0.25		0.03	
h_{ω}^{0}		-0.16	-0.13	-0.23	-0.22	-0.07	0.06
h_{ω}^{1}	-0.003	-0.002	0.05		0.22	0.07	0.06

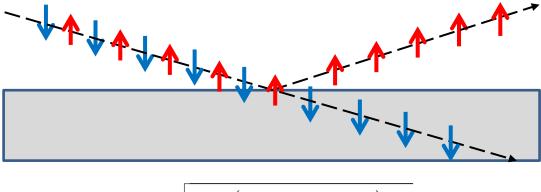
• HWI also characterized by EFT couplings known as Danilov Parameters $\lambda_t, \ \lambda_s^0, \ \lambda_s^1, \ \lambda_s^2, \ \rho_t, \ C_6^{\pi}$

SNS Neutrons/ Overview of Experiment


SNS Neutrons for FnPB

- Neutrons from a 60 Hz 1GeV proton Beam
- 1mA of current on target corresponds to a power of 1MW.
- Cryogenic moderator at 20K produces cold neutrons


SNS Neutrons for FnPB (II)


- Cold neutrons enter a Supermirror neutron guide
- Gaps for frame definition choppers which transmit wavelengths 2.5 – 6.5A.
- Supermirror Polarizer at end of guide
- Polarizer reflects one neutron spin state and absorbs the other

Supermirror Bender Polarizer

- Channels have radius of curvature 14.8 m
- Every neutron incident on polarized will bounce at least once.
- Supermirror coating composed of alternating layers of Ni and Si
- Large external B-field saturates magnetization of Ni layers

$$n = \sqrt{1 - \left(\frac{Nb_{coh}}{\pi} \pm \frac{\mu B}{2\pi^2 \hbar^2}\right)\lambda^2}$$

Neutron Beam as Mixed Ensemble

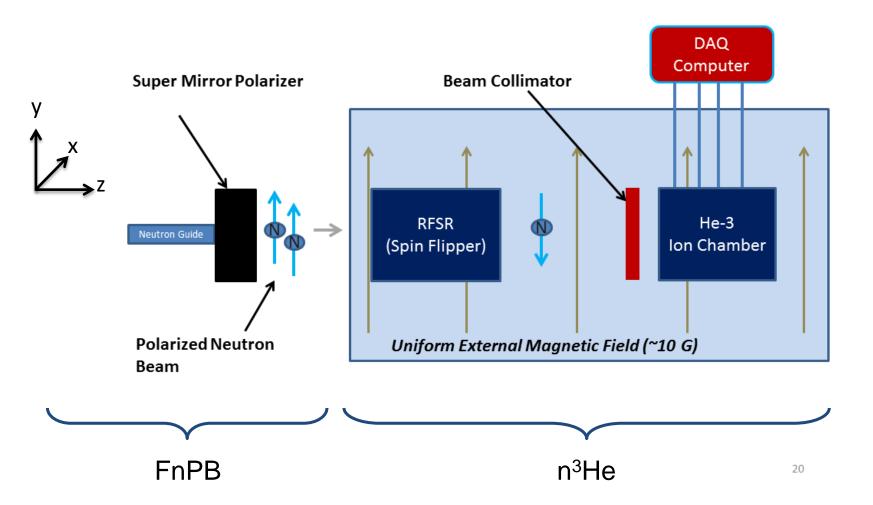
- Beam neutrons emerging from the moderator have randomly oriented spins: Incoherent Mixture
- Describe beam with a Density Matrix:

$$\rho = \frac{1}{2} |S_z + \rangle \langle S_z + | + \frac{1}{2} |S_z - \rangle \langle S_z - |$$

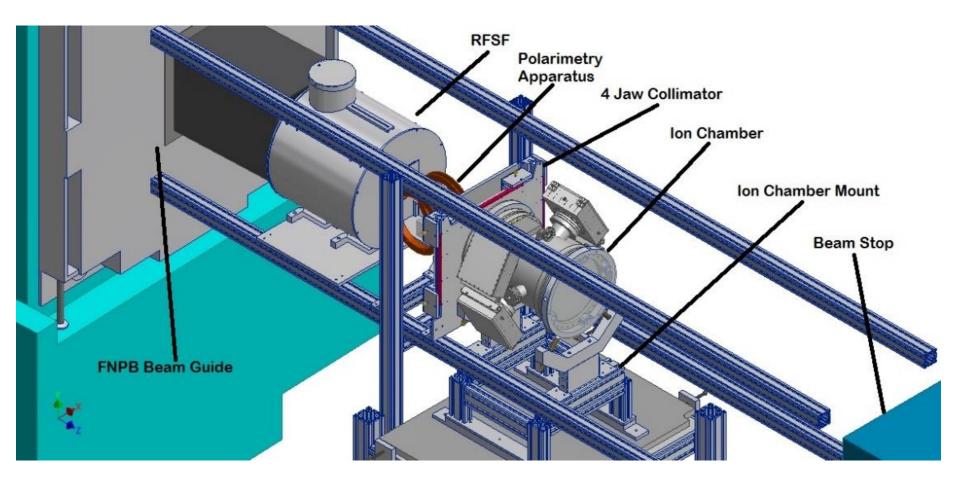
• Expectation values for the random ensemble calculated using the density operator

$$\langle S_x \rangle = Tr[\rho S_x] = 0$$

 $\langle S_y \rangle = Tr[\rho S_y] = 0$
 $\langle S_z \rangle = Tr[\rho S_z] = 0$


Neutron Beam after the SMP

- State vector neutron beam reflected from a perfect supermirror: $|\psi\rangle_{beam} = |S_y+\rangle$
- $_{fp}$ Density operator for the beam at polarization P_n


$$\rho = P_n |S_y + \rangle \langle S_y + | + \frac{1 - P_n}{2} |S_x + \rangle \langle S_x + | + \frac{1 - P_n}{2} |S_x - \rangle \langle S_x - |$$

$$\langle S_x \rangle = Tr[\rho S_x] = 0 \langle S_z \rangle = Tr[\rho S_z] = 0$$

$$\langle S_y \rangle = Tr[\rho S_y] = \frac{\hbar}{2}P_n$$

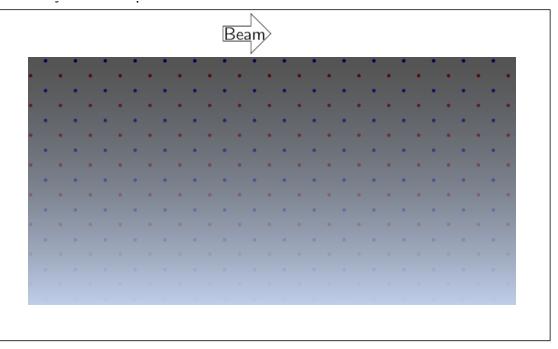
Details of Experiment

Details of Experiment (II)

Ion Chamber

Frame stack holds alternating planes of high voltage and signal wires

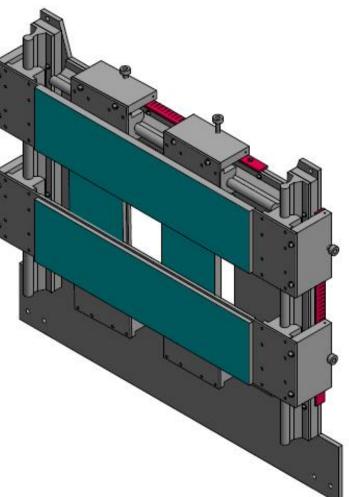
- 17 High Voltage Wire Planes
- 16 Signal Wire Planes
- 144 Signal Wires Total


Wires in the ion chamber

- Red wires are high voltage
- Blue wires are signal wires

 $\langle \sigma
angle$

Wires labeled by: (S,w)


• Spacing between all wires of the same color is 1.9cm

- HV 17 HV Frames with 8 wires each
- Signal 16 signal Frames with 9 wires each

Four-Jaw Collimator

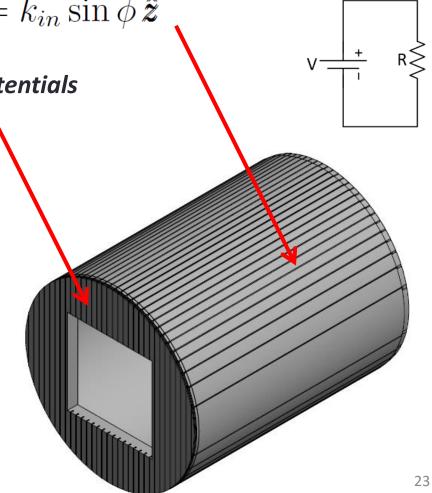
- Doors covered with Li-6 and Cd which absorbs 99% of beam
- Adjustable doors can transmit a beam of any height and width
- Defines beam incident on ion chamber
- Required for neutron polarimetry.

SPIN FLIPPER

Spin Flipper for the n³He Experiment

Pictures of Outer Coils

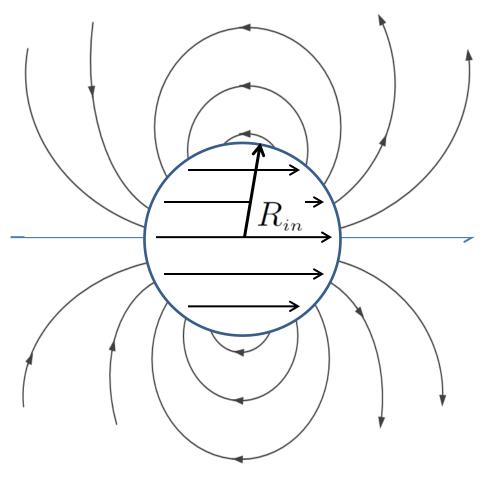
Design of a Cosine Theta Coil


Surface Current Density:

$$\boldsymbol{k}_{in}(\phi) = k_{in} \sin \phi \, \boldsymbol{\hat{z}}$$

Wires on end caps routed along equi-potentials

Fields determined using theory of a magnetic scalar potential:


$$U_{in} = -\frac{kr}{2}\cos\phi$$
$$U_{out} = \frac{kR_{in}^2}{2r}\cos\phi$$

Fields of a Cosine Theta Coil

$$\boldsymbol{H}_{in} = H_o \boldsymbol{\hat{x}}$$
$$\boldsymbol{H}_{out} = \frac{k R_{in}^2}{2r^2} [\cos \phi \, \boldsymbol{\hat{r}} + \sin \phi \, \boldsymbol{\hat{\phi}}]$$

- External B-Field is problematic for the n3He experiment
- External B-Field can be the source of false asymmetries
- Need false asymmetries < 10⁻⁸

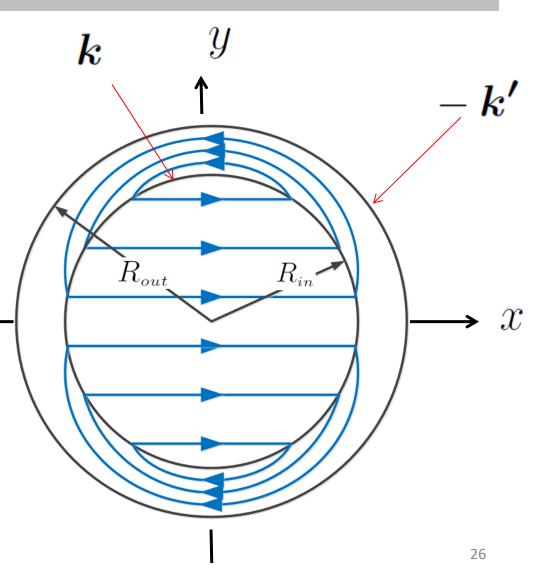
Design of a Double Cosine-Theta Coil

- Two Concentric Cosine theta coils
- Currents flow in opposite directions
- Approximation of infinite coil still valid

$$\boldsymbol{k}_{out}(\phi) = -k' \sin \phi \, \boldsymbol{\hat{z}}$$

$$\boldsymbol{k}_{in}(\phi) = k \sin \phi \, \boldsymbol{\hat{z}} -$$

$$U_{in}(r,\phi) = -H_{rf}r\cos\phi$$

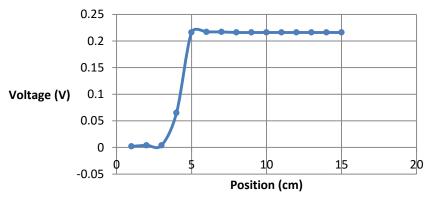

$$U_{out}(r,\phi) = \left[\frac{R_{in}^2}{R_{out}^2 - R_{in}^2}\right] H_{rf} \left[r + \frac{R_{out}^2}{r}\right] \cos\phi$$

Fields of a Double Cosine Theta Coil

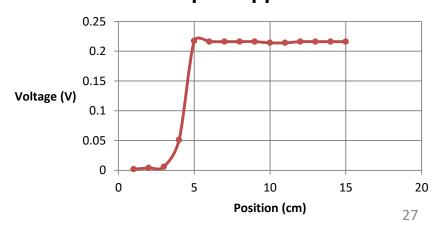
--A way to produce a selfcontained uniform magnetic field that doesn't interfere with other components in the experiment.

--No False asymmetries from Spin Flipper

$$r < R_{in} \qquad \mathbf{H}_{in} = H_o \mathbf{\hat{x}}$$
$$R_{in} < r < R_{out} \qquad \mathbf{H}_{mid}(r, \phi)$$
$$r > R_{out} \qquad \mathbf{H}_{ext} = 0$$


Field Measurements in Spin Flipper

Blue Curve


0.002
0.004
0.004
0.065
0.216
0.217
0.217
0.216
0.216
0.216
0.216
0.216
0.216
0.216
0.216

Red Curve						
1	0.002					
2	0.004					
3	0.006					
4	0.051					
5	0.217					
6	0.216					
7	0.216					
8	0.216					
9	0.216					
10	0.214					
11	0.214					
12	0.216					
13	0.216					
14	0.216					
15	0.216					

Field Measurements at the End of the Spin Flipper

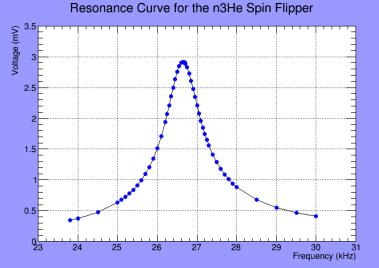
Field Measurements at the End of the Spin Flipper

Inductance of Cosine-Theta Coils

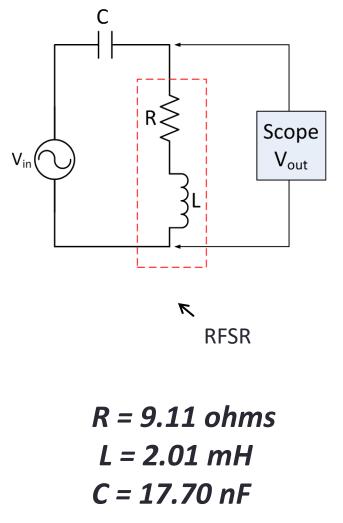
- More than one way to calculate inductance of cosine-theta coils:
 - 1. Magnetic Flux Calculation: $\Phi = LI$
 - 2. Stored energy in the Magnetic Field:

$$E = \frac{\mu_o}{2} \int |\boldsymbol{H}|^2 dv$$

Cosine theta coil:
$$L = \frac{\mu_o \pi z_o}{32} N^2$$
Double cosine theta coil: $L = \frac{\mu_o \pi z_o}{32} N_1 N_2 \left[\frac{R_{out}}{R_{in}} - \frac{R_{in}}{R_{out}} \right]$


$$L = \frac{5}{16} \mu_o \pi z_o N^2 \quad \longrightarrow \quad L = 2.01 \,\mathrm{mH}$$

Double Cosine Theta Coil as RCL Circuit


• Choose capacitor so that the circuit resonance is at the Larmor Frequency

Measure L using: $C=1/\omega_L^2 L$

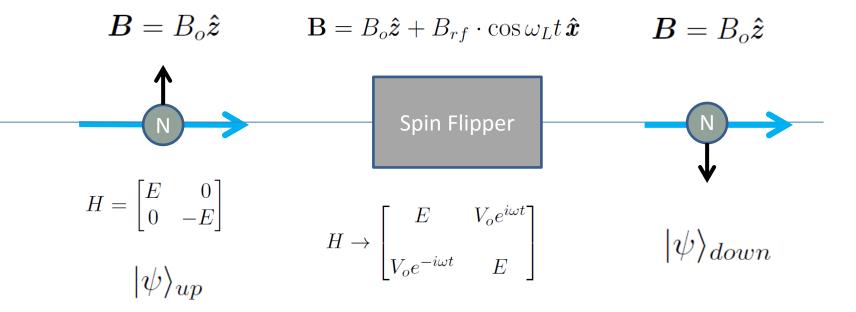
Two-State Spin Magnetic Resonance

- Problem solved in the interaction picture
- Two-state problem is exactly solvable (See Sakurai)

$$i\hbar \begin{bmatrix} \dot{C}_1 \\ \dot{C}_2 \end{bmatrix} = \begin{bmatrix} E_1 & Ve^{i\omega t} \\ Ve^{i\omega t} & E_2 \end{bmatrix} \cdot \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

- Solve coupled DE's for probability amplitudes
- Solution requires initial spins all $C_1(0) = 1$ $C_2(0) = 0$ pointing in the same direction

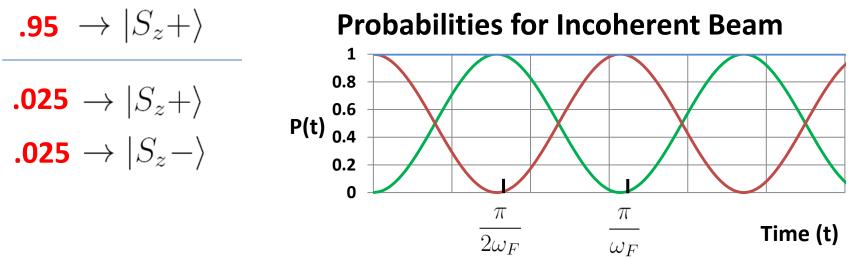
$$\longrightarrow$$


$$P(t) = \frac{4\omega_F^2}{4\omega_F^2 + (\omega_L - \omega_{rf})^2} \sin^2 \left[\sqrt{\omega_F^2 + \frac{(\omega_L - \omega_{rf})^2}{4}} t \right]$$

$$P(t) = |C_1(t)|^2 = 1 - |C_2(t)|^2$$

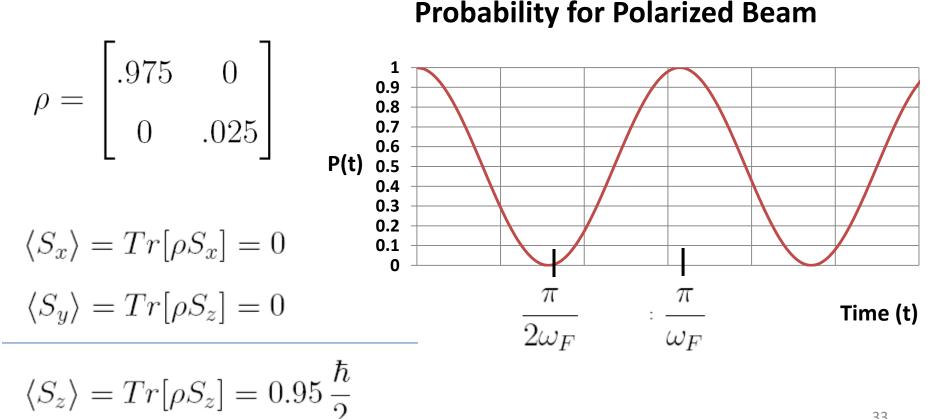
Spin Magnetic Resonance with the Spin Flipper

Drive the Spin Flipper at the Larmor frequency of neutrons in the 10 Gauss B-field


$$\omega_L \equiv \gamma_n B_o$$

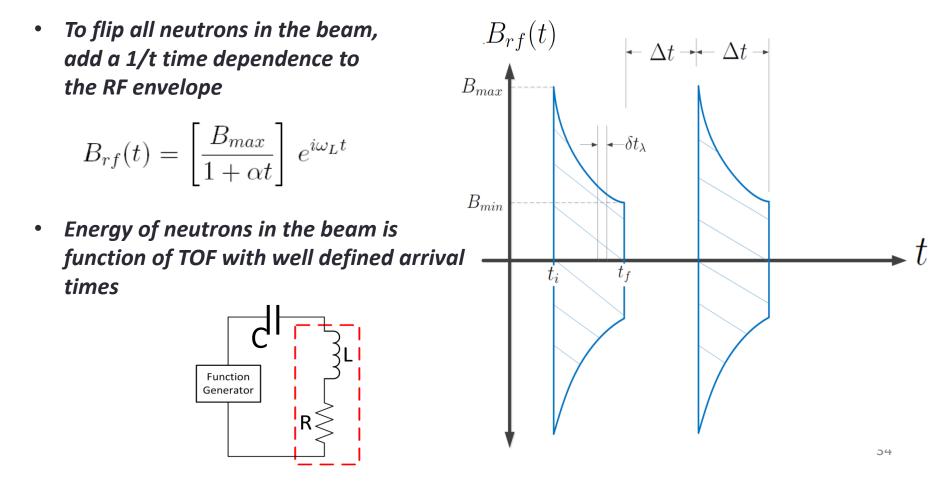
• Perturbed field inside the spin flipper rotates the state ket

SMR For a Mixed Ensemble


- $\rho = .95 |S_z + \rangle \langle S_z + | + .025 |S_z + \rangle \langle S_z + | + .025 |S_z \rangle \langle S_z |$
 - Solve the SMR problem 3 times –once for each fractional population

• Probabilities for transitions of incoherent components oscillate out-of-phase. No contribution to SMR problem

SMR for a Mixed Ensemble (II)


 $\rho = .95 |S_z + \rangle \langle S_z + | + .025 |S_z + \rangle \langle S_z + | + .025 |S_z - \rangle \langle S_z - |$

Flipping Neutrons with a Wavelength Spectrum 2.5 – 6.5 A

 Oscillating RF field only works for a single wavelength

 $\Delta T = t_f - t_i = 16.67 \,\mathrm{ms}$

Initial Tuning of the Guide Field

$$P(t) = \frac{4\omega_F^2}{4\omega_F^2 + (\omega_L - \omega_{rf})^2} \sin^2 \left[\sqrt{\omega_F^2 + \frac{(\omega_L - \omega_{rf})^2}{4}} t \right]$$

$$Q(\lambda) \rightarrow \frac{1 + P_n(\lambda)}{1 + \alpha P_n(\lambda)}$$

$$Spin flip ratio as a function of the guide field:$$

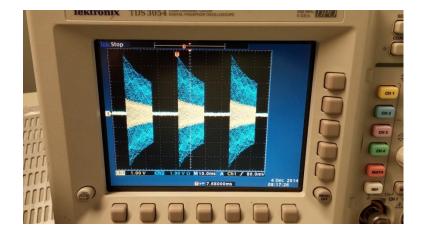
$$\langle Q(B_o) \rangle = \frac{4\omega_F^2 + (\gamma_n B_o - \omega_{rf})^2}{4y_n \omega_F^2 + (\gamma_n B_o - \omega_{rf})^2}$$

$$y_n = \frac{1 - \langle P_n \rangle}{1 + \langle P_n \rangle} \qquad \lambda \sim 4.75 \text{\AA}$$

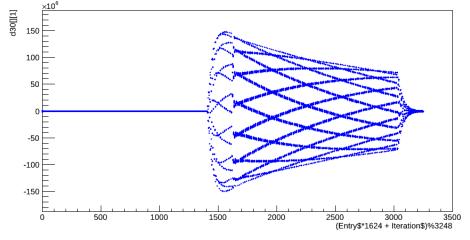
Initial Tuning the RF B-Field

$$P(t) = \frac{4\omega_F^2}{4\omega_F^2 + (\omega_L - \omega_{rf})^2} \sin^2 \left[\sqrt{\omega_F^2 + \frac{(\omega_L - \omega_{rf})^2}{4}} t \right]$$

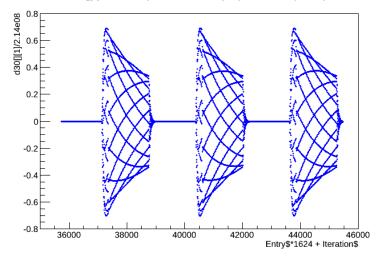
$$Q(\lambda) \rightarrow \frac{1 + P_n(\lambda)}{1 + \alpha P_n(\lambda)}$$


$$Q(\lambda) \rightarrow \frac{1 + P_n(\lambda)}{1 + \alpha P_n(\lambda)}$$

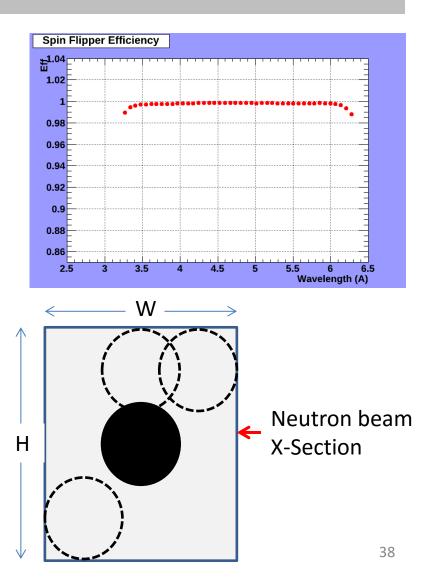
$$Q(\lambda) \rightarrow \frac{1 + P_n(\lambda)}{1 + \alpha P_n(\lambda)}$$


$$\frac{1}{\log \theta}$$

$$\frac{1}{$$


Spin Flipper Signal Read by DAQ

d30[[1]:(Entry\$*1624 + Iteration\$)%3248 {Entry\$%25==0}


d30[][1]/2.14e08:Entry\$*1624 + Iteration\$ {Entry\$ > 21 && Entry\$ < 28 }

- Signal read by the DAQ shows distortion of the signal at the beginning and end of the pulse.
- Vertical line at T=1624 represents DAQ reset to measure next neutron pulse.

Summary of Spin Flipper Capabilities

- A new technology for flipping neutron spins
- Superior operation compared to NPDGamma spin flipper---reaches the limit of efficiency
- Can flip both longitudinal and transverse neutron spin orientations
- Spin flip efficiency is uniform over all parts of the beam
- Should become the industry standard

Neutron Polarimetry

Neutron Polarimetry

Essential Component of the n³He experiment. On a regular basis need to check that:

The neutron beam is what we think it is:

• Measure beam polarization: $P_n(\lambda)$

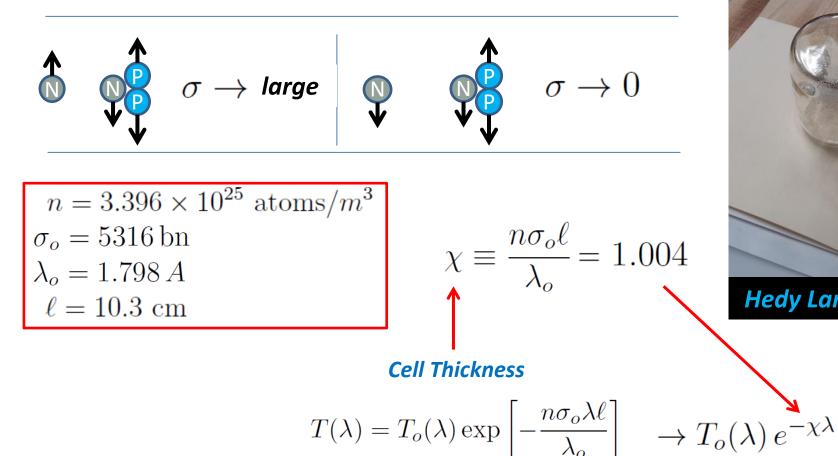
The spin flipper is flipping the way we think it should.

- Measure spin flipper Efficiency: $\epsilon_{sf}(\lambda)$
- Keep guide field tuned to optimize spin flipper operation

Polarimetry Results

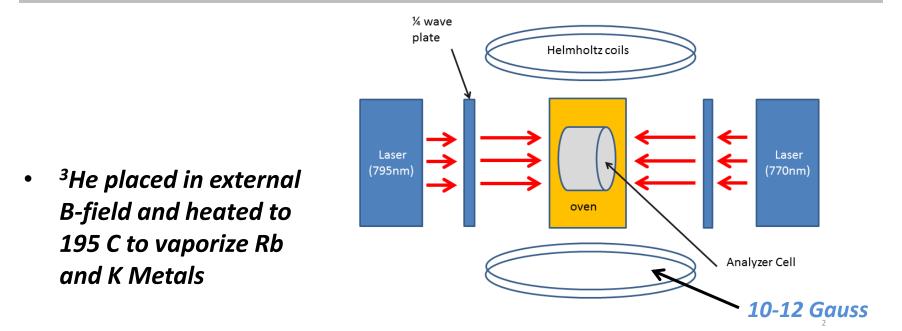
$$A_p = \frac{A_{obs}}{\langle P_n \rangle \cdot \langle \epsilon_{sf} \rangle}$$

 $\langle P_n \rangle = 0.936 \pm 0.0018$ $\langle \epsilon_{sf} \rangle = 0.9979 \pm .00091$


- Determine $P_n(\lambda)$ and $\epsilon_{sf}(\lambda)$ during neutron polarimetry in the range 3.5 6.0 Å
- Average over neutron wavelengths and then average again over each polarimetry

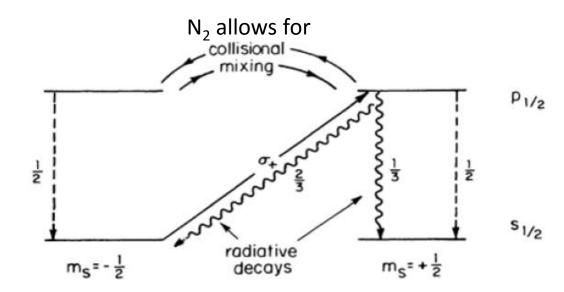
Polarimetry Dates:

- 1. 01/28/2015
- 2. 02/17/2015
- 3. 02/25/2015
- 4. 03/25/2015
- 5. 04/21/2015
- 6. 05/20/2015
- 7. 06/23/2015
- 8. 08/17/2015
- 9. 08/24/2015
- 10. 09/23/2015
- 11. 10/22/2015
- 12. 11/30/2015


Properties of a ³He Cell

• Filled with ³He, Rb, K, N₂

Hedy Lamarr


Spin Exchange Optical Pumping

- Focus infra-red Laser light on cell to polarizes Rb and K vapors
- Polarized Rb and K transfer polarization to ³He nuclei thru hyperfine interaction
- Cell polarizes overnight

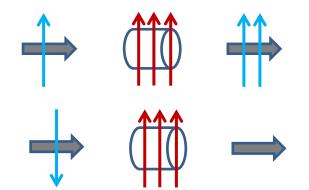
Optical Pumping of Alkali Metals

- Incident circularly polarized light can only be absorbed by the Ms = -1/2 sub-state
- *P*_{1/2} state will decay to either
 *S*_{1/2} sub-state
- Partial pressure of N₂ induces collisional mixing/increases cell polarization

$$P_A = \rho_A(+\frac{1}{2}) - \rho_A(-\frac{1}{2})$$

$$P(t) = \frac{\gamma_{SE} P_A}{\Gamma + \gamma_{SE}} \left[1 - e^{-(\Gamma + \gamma_{SE})t} \right]$$

Polarimetry Apparatus/Setup

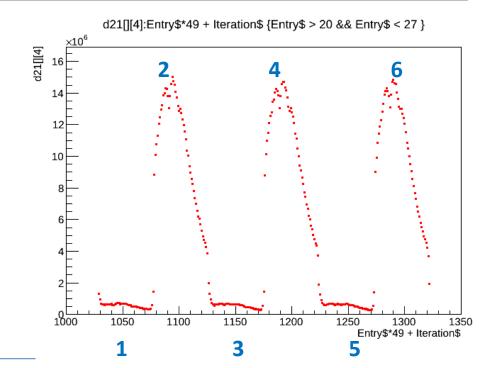

- Polarimetry apparatus centered near beam centroid
- Polarized cell sits in acrylic V-Block assembly

$$T(\lambda) = T_o(\lambda) \cdot e^{-\chi\lambda} \cosh(\chi\lambda P)$$

Analyzing Power of the ³He cell: $P_n(\lambda) = \tanh(\chi \lambda P)$

Large transmission for parallel spins

 $T(\lambda) = T_o(\lambda) \cdot e^{-\chi\lambda} \left[\cosh(\chi\lambda P) + P_n \sinh(\chi\lambda P)\right]$

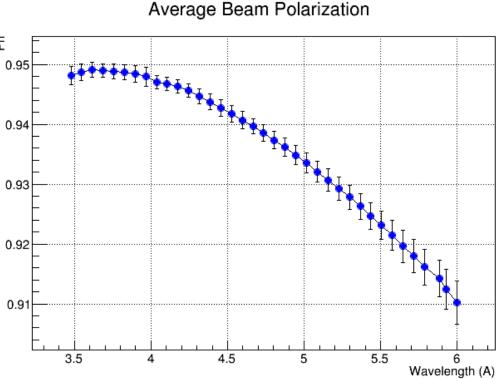

Large absorption for anti-parallel spins

Calculating Neutron Beam Polarization

Polarization determined by measuring beam transmission thru:

- Polarized Cell
- Un-polarized Cell

$$R_1 \equiv \frac{T_{on}}{T_{unp}} \qquad R_2 \equiv \frac{T_{off}}{T_{unp}}$$

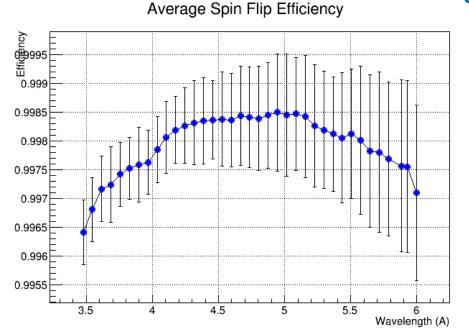

$$P_n(\lambda) = \frac{R_1 - R_2}{\sqrt{[R_2 - (1 - 2\epsilon_{sf})R_1]^2 - 4\epsilon_{sf}^2}} \longrightarrow P_n(\lambda) = \frac{R_1 - R_2}{\sqrt{[R_2 + R_1]^2 - 4}}$$

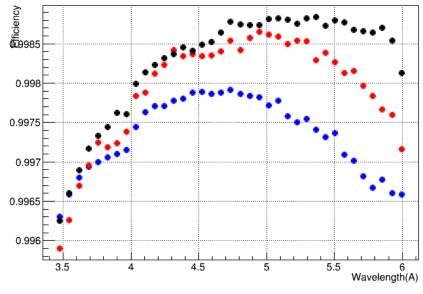
Neutron Beam Polarization

- Polarization determined from 8 independent measurements
 Feb – Nov 2015
- Beam polarization measured at beam center:

 $\langle P_n \rangle = 0.936 \pm 0.0018$

• Slope of Beam polarization curve due to supermirror polarizer




Calculation of Spin Flipper Efficiency

$$\epsilon_{sf} = \frac{1}{2} \left[1 - \frac{P_{on}}{P_{off}} \right]$$

$$\langle \epsilon_{sf} \rangle = 0.9979 \pm .00091$$

- Calculate spin flipper efficiency by reversing polarization of the He-3 cell (AFP Flip)
- Off-axis measurements of spin flipper efficiency show no significant changes

Contributions to the n³He Experiment

- Completed all aspects of the design, construction, testing, and integration of the Spin Flipper
- Completed design and construction of the 4-Jaw collimator
- Completed design of the V-Block/Sled alignment hardware
- Completed design of two XY scanner mounts for location of Beam Centroid
- Major contributor to the design/construction/implementation of the alignment laser beam
- Major role in completing alignment of the guide field in the cave
- Presentations on the spin flipper for APS and ACNS
- Performed all polarimetry measurements for the n³He experiment

n³He Collaboration

n³He Collaboration

Pil-Neo Seo¹, Michele Viviani², Seppo Pentillä³, David Bowman³, Vince Cianciolo³, Jack Thomison³, Chris Crawford⁴, Latiful Kabir⁴, Aaron Sprow⁴, Ivan Novikov⁵, Michael Gericke⁶, Mark McCrea⁶, Carlos Olguin⁶, Libertad Baron⁷, John Calarco⁸, Vladimir Gudkov⁹, Young-Ho Song⁹, Nadia Fomin¹⁰, Geoff Greene¹⁰, Christopher Hayes¹⁰, Irakli Garishvili¹⁰, Eric Plemons¹⁰, Josh Hamblen¹¹, S. Baessler¹²

¹Duke University, Triangle Universities Nuclear Laboratory ²Istituto Nazionale di Fisica Nucleare, Sezione di Pisa ³Oak Ridge National Laboratory ⁴University of Kentucky ⁵Western Kentucky University ⁶University of Manitoba ⁷Universidad Nacional Autónoma de México ⁸University of New Hampshire ⁹University of New Hampshire ⁹University of South Carolina ¹⁰Univeristy of Tennessee ¹¹Univeristy of Tennessee at Chattanooga ¹²University of Virginia