Preliminary asymmetry analysis

Rob Mahurin, Corwin Lester, Sydney Smith
MTSU

2015-11-23 Mon

1/14

Outline

Python analyzer and data model

Asymmetry computation

Results (a tease)

2/14

An independent analysis tool, written in pure Python

Git repository: ssh://basestar.phys.utk.edu/ mahurin/n3he_py.git
» This presentation documents v0-02.
> Earlier PyROOT-based version (v0-01) included in n3he repository.
» ROOT dependence excised (save one example).

Python is a robust Python has a rich library ecosystem
interpreted language
> ipython: extra-featured
> EXplICIt |OOpS are SlOW, but interpreter
implicit loops may access

- » numpy: fast library for numerical
compiled code.

analysis, especially arrays
> matplotlib: MATLAB-esque
plotting library

» Rapid prototyping and
development
» Easy to attach new

. antigravity:
metadata to objects 6 g\ \y

\
X

» Exception handling rather
than segfaulting

> No distinction between
"typed-in’ code and
'scripts’

3/14

https://ipython.org/
http://www.numpy.org/
http://matplotlib.org/
https://xkcd.com/353/

ADCdata

» Raw data files are accessed as arrays of integers using numpy .memmap. The
memory-map allocates space to store the entire data file in memory® but
delays the read until data is actually accessed. Short random reads are
fast, and there is no penalty associated with loading an entire file.

» ADCdata objects present datafiles to the interpreter as structured arrays of
'header’ and 'data’. The data array is a 3D array with indices [pulse, tbin,
channel]. There are some utility functions for making common tasks easier.

In [0]: import n3he_mm; from n3he_mm import *
In [0]: adc = ADCdata(run=39390, adc=21)

In [0]: adc[’header’].dtype, adc[’data’].dtype # data types
Out[0]: (dtype(’uint32’), dtype(’int32’))

print, from ADC headers, pulse 10, first five elements
In [0]: print adc[’header’][10, :5]
[2857759060 2857759060 2857759060 2857759060 11]

from pulse 10, first 5 time bins of channel 4 (upstream center wire)
In [0]: print adc[’data’][10, :5, 4] # raw data

In [0]: print adc[’data’][10, :5, 4].adc_value()

In [0]: print adc[’data’][10, :5, 4].volts()

[265427236 258715940 262409508 276724004 294627876]

[1036825 1010609 1025037 1080953 1150890]

[1.23599172 1.20473981 1.22193933 1.28859639 1.37196779]

1 The big memory allocation for ADCdata objects is annoying, but | get around it in DAQdata
objects by using the same sort of trick: only creating the actual ADCdata objects briefly, when
there is a request for their data.
4/14

http://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html
https://docs.scipy.org/doc/numpy/user/basics.rec.html

DAQdata

A DAQdata object is a container of the five ADCdata objects for a run, with
some utility functions. For instance, data from the target may be accessed by
[adc](channel) or by (plane, wire):

In [0]: print adc.run, adc.adc
39390 21

In [0]: d = DAQdata(run=adc.run)

In [0]: print adc[’data’][10, :5, 4].volts()

In [0]: print d[21] (channel=4)[10, :5].volts()

In [0]: print d(plane=0, wire=4)[10, :5].volts()

[1.23599172 1.20473981 1.22193933 1.28859639 1.37196779]
[1.23599172 1.20473981 1.22193933 1.28859639 1.37196779]
[1.23599172 1.20473981 1.22193933 1.28859639 1.37196779]

In [0]: compare = (d(plane=0, wire=4) == adc(channel=4)) # churn through file
In [0]: print repr(compare)

ADCdata(filename=None, dtype=dtype(’bool’), shape=(25000, 49))

In [0]: print compare.all() # check all 1.2M comparisons
True

5/14

DAQsummary

A DAQsummary is a special DAQdata which tries to read a summary file rather
than raw data files. If the summary file isn’t found, DAQsummary will compute
one and try to save it. The summary contains (as of v0-02):

» 'rfsf’: boolean array, spin flipper on/off for pulse

> 'beam’: float64 array, mean beam monitor voltage per pulse

> 21-24: int32 arrays, sum of adc.values() per channel per pulse
The time bins used in the summing/averaging are stored with the arrays. The
detector data is guaranteed to fit in an int32: even summing 98 time bins from
adjacent pulses, log2(98 * 2**24) < 31.
A DAQsummary condenses a 1.3 GB run down to about 20 MB.

6/14

Code sample: input

In [0]:
In [0]:
[88

Let’s
In [0]:

First
In [0]:
In [0]:
In [0]:

summary = DAQsummary(run=d.run)
print find(summary[’beam’] < 1.5) # use 1.5V as the beam cutoff
688 1288 1888 2488 3088 3688 4288 4697 4698 4699 ...]

look at the consective dropped pulses around 4700
interval = r_[4694:4702] # a helpful numpy range operator

some plots of the beam monitor
plot(summary[’beam’].tbins.flatten() + interval, # xdata, minor ugh

summary [’beam’] [intervall, # ydata
’0’, label=’mean beam current’, alpha=0.5)
d[30](0) .plot (pulselist=interval, fmt=’-’, label=’actual beam current’)

d[30](0) .plot (pulselist=interval, tbins=summary[’beam’].processed,
fmt=>.’, label=’included in average’)

Next some similar plots of the front-and-center wire

In [0]:
In [0]:
In téj;
In [0]:

plane,wire = 0,4
plot (summary(plane,wire) .tbins.flatten() + interval, # xdata, minor ugh

summary (plane,wire) [intervall .volts(), # ydata
’0’, label=’mean wire signal’, alpha=0.5)
d(plane,wire) .plot(pulselist=interval, fmt=’-’, label=’wire signal’)

d(plane,wire) .plot(pulselist=interval,
tbins=summary (plane,wire) .processed,
fmt=>.k’>, label=’included in average’)

7/14

Code sample: output

run 39390, plane 0, wire 4

e o mean beam current
4 — actual beam current .
© © * + included in average °
© © mean wire signal
— wire signal
3- -+ included in average B
a
S
2
- <] e)
22- -
=
w
1- -
0- -

4694 4695 4696 4697 4698 4699 4700 4701 4702
pulse number =t * 60 Hz

8/14

Asymmetry computation: formalism

Definitions and assumptions

Beam current I+
Beam polarization p*
i-th detector “efficiency” ¢
Geometric sensitivity gi
Physics asymmetry A

Yield from i-th detector:

Y = el* (1+ gP*A)

i

Spin flipper efficiency, detector
symmetry are good:

P" ~ —P~
&~ —§g

Possible asymmetries

It =1
Abeam - ﬁ
Wire asymmetry:
YiJr - \/,'_ _ Abeam +g:PA

"TYTEY, T 11 AveamgiPA
Ai + AJ ~ 2Abeam + (g, +gJ)PA

Ai — Aj = 2giPA(1 — Ateam)

Ratio of pairs:

+ + /vyt
Rij =Y /Y/
An — Rj —Ry _ _ 2giPA
TR +R; 1+(&iPA)?

Non-leading terms are a little iffy.

9/14

In [34]: summary = DAQsummary (run=14858)

In [35]: summary.keys()

[’rfsf’, ’beam’, 21, 22, 23, 24]

In [36]: summary._dispatch_table

{’miss’: <function n3he_mm.low_beam>,
‘nearmiss’: <function n3he_mm.near_low_beam>,
’diff21”: <functools.partial at 0x2b45d60>,
’asym21’: <functools.partial at 0x2b54100>,

-}

Most runs from this era appear to have

the spin flipper phased different from

the fall runs. A configuration change?

In [45]: cp = [True, False]

In [46]: summary[’badrfsf’] = \
summary.rfsf_bad(correct_pattern=cp)

Calling this function ...
In [47]: summary(’asym’, plane=0, wire=4)
ADCdata([[2.29702134e-04],

[6.66346858e-04],

[3.91685902e-04],

[-1.88695423e-041])

... computes and stores intermediate results

In [48]: summary.keys()

[’rfsf’, ’beam’, 21, 22, 23, 24,
’badrfsf’, ’miss’, ’nearmiss’,
’diff21’, ’sum21’, ’asym21’]

’good21’, ’pol’,

Caching evaluation of asymmetries on summary data

Asymmetry computations are
done starting from the
“summed” data (the big fat
dots, one per pulse).

 run 39390, plane 0, yire 4 |

« mean beam current
actual beam current
included in average

© & mean wire signal
wire signal
included in average

o DRTARG S —

4694 4605 4695 4697 4698 4699 4700 4701 4702
pulse number = t+ 60 hz

Cuts at this stage are

» Nearby missed pulses. One
before miss is bad, five
after miss is good again.

» Spin flipper phase.
Apparently during the PC
data the spin flipper phase
was shifted compared to

now? 10/14

Run-level asymmetries in each channel

For each run, find individual asymmetries. This one is —9.4(4.6) x 107°.

run 14858, plane 0, wire 4: wire asymmetries

0.002 -
0.001

0.000

asymmetry

—0.001

@ mean + width
t mean+s.em.

-0.002} .
0 2000 4000 6000 8000 10000 12000 0 100200300400500600
sequence number sequences in bin

Also find the combination asymmetries. Here's Aoy — Aoz = 7.0(5.4) x 107°

run 14858, plane 0, wires 1,7: difference of wire asymmetries

0.002 - 1
0.001 1

2

5

£

E. 0.000 . A -

o

© F

—0.001

¢ mean + width
t mean+sem. |

—0.002 | 1
0 2000 4000 6000 8000 10000 12000 0 100200300400500600
sequence number sequences in bin

Combine run-level asymmetries across dataset

Combine run-level asymmetries over many runs. Single-wire asymmetries: ugh.

plane 0, wire 4: wire asymmetries

0.00015 T T T T T
0.00010 4 E
0.00005
E I
@
E 0.00000 *
g "
® -0.00005
=0.00010 1 ¢ mean + width
4 garbage
—0.00015
14800 15000 15200 15400 15600 0.0 0.5 1.0 1.5 2.0 2.5
run number weighted freq lel2

The wire difference asymmetries are drawn from a simpler distribution.

plane 0, wires 1,7: wire asymmetry differences

@ mean + width

0.00002 | } 1 { error-weighted meah

0.00001 |

0.00000

asymmetry

—0.00001

—0.00002 1

14800 15000 15200 15400 15600 00 05 1.0 15
run number weighted frequency lel2 12/14

Some warts still included
The error-weighted average for the (purple) asymmetry difference is
Aot — Aoz = (7.3 +£1.8) x 1077

with x?/d.o.f. = 994/895. Not bad!

plane 0, wires 1,7: wire asymmetry differences

0.000301 . ome warts still included 1 [meanwidth 1
+ error-weighted mean
0.00025 + 4 L 4
> 0.00020 - 4 L J
@
£ 0.00015 4 L 4
€
2 0.00010 1t j
0.00005 - 4 L J
0.00000| ek v W S | F_‘ o]
14800 15000 15200 15400 15600 15800 0.0 0.5 1.0 15
run number weighted frequency lel2

No further cuts so far.

13 /14

So close, but not there yet

Current status

» Have computed results for 896
runs in the parity-conserving
configuration 14785-15784

> wire asymmetries (144)

> conjugate-pair sums of wire
asymmetries (64)

> conjugate-pair differences of
wire asymmetries (64)

> asymmetries of conjugate-pair
signal ratios (64)

» Asymmetry computation from
completed run summaries at rate
of about 10/minute

In progress

» Currently computing run
summaries at 100-150 per
hour, with 20k/40k completed.

> Nice plotting/tabulating of
existing results (bummer)

» More results: after holiday

Not done

» Geometry factors

» Correlations

14 /14

	Python analyzer and data model
	Asymmetry computation
	Results (a tease)

