
Preliminary asymmetry analysis

Rob Mahurin, Corwin Lester, Sydney Smith
MTSU

2015-11-23 Mon

1 / 14

Outline

Python analyzer and data model

Asymmetry computation

Results (a tease)

2 / 14

An independent analysis tool, written in pure Python

Git repository: ssh://basestar.phys.utk.edu/~mahurin/n3he_py.git
I This presentation documents v0-02.
I Earlier PyROOT-based version (v0-01) included in n3he repository.
I ROOT dependence excised (save one example).

Python is a robust
interpreted language

I Explicit loops are slow, but
implicit loops may access
compiled code.

I Rapid prototyping and
development

I Easy to attach new
metadata to objects

I Exception handling rather
than segfaulting

I No distinction between
’typed-in’ code and
’scripts’

Python has a rich library ecosystem

I ipython: extra-featured
interpreter

I numpy: fast library for numerical
analysis, especially arrays

I matplotlib: MATLAB-esque
plotting library

I antigravity:

3 / 14

https://ipython.org/
http://www.numpy.org/
http://matplotlib.org/
https://xkcd.com/353/

ADCdata

I Raw data files are accessed as arrays of integers using numpy.memmap. The
memory-map allocates space to store the entire data file in memory1 but
delays the read until data is actually accessed. Short random reads are
fast, and there is no penalty associated with loading an entire file.

I ADCdata objects present datafiles to the interpreter as structured arrays of
’header’ and ’data’. The data array is a 3D array with indices [pulse, tbin,
channel]. There are some utility functions for making common tasks easier.

In [0]: import n3he_mm; from n3he_mm import *

In [0]: adc = ADCdata(run=39390, adc=21)

In [0]: adc[’header’].dtype, adc[’data’].dtype # data types
Out[0]: (dtype(’uint32’), dtype(’int32’))

print, from ADC headers, pulse 10, first five elements
In [0]: print adc[’header’][10, :5]
[2857759060 2857759060 2857759060 2857759060 11]

from pulse 10, first 5 time bins of channel 4 (upstream center wire)
In [0]: print adc[’data’][10, :5, 4] # raw data
In [0]: print adc[’data’][10, :5, 4].adc_value()
In [0]: print adc[’data’][10, :5, 4].volts()
[265427236 258715940 262409508 276724004 294627876]
[1036825 1010609 1025037 1080953 1150890]
[1.23599172 1.20473981 1.22193933 1.28859639 1.37196779]

1The big memory allocation for ADCdata objects is annoying, but I get around it in DAQdata
objects by using the same sort of trick: only creating the actual ADCdata objects briefly, when
there is a request for their data.

4 / 14

http://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html
https://docs.scipy.org/doc/numpy/user/basics.rec.html

DAQdata

A DAQdata object is a container of the five ADCdata objects for a run, with
some utility functions. For instance, data from the target may be accessed by
[adc](channel) or by (plane, wire):

In [0]: print adc.run, adc.adc
39390 21

In [0]: d = DAQdata(run=adc.run)

In [0]: print adc[’data’][10, :5, 4].volts()
In [0]: print d[21](channel=4)[10, :5].volts()
In [0]: print d(plane=0, wire=4)[10, :5].volts()
[1.23599172 1.20473981 1.22193933 1.28859639 1.37196779]
[1.23599172 1.20473981 1.22193933 1.28859639 1.37196779]
[1.23599172 1.20473981 1.22193933 1.28859639 1.37196779]

In [0]: compare = (d(plane=0, wire=4) == adc(channel=4)) # churn through file
In [0]: print repr(compare)
ADCdata(filename=None, dtype=dtype(’bool’), shape=(25000, 49))

In [0]: print compare.all() # check all 1.2M comparisons
True

5 / 14

DAQsummary

A DAQsummary is a special DAQdata which tries to read a summary file rather
than raw data files. If the summary file isn’t found, DAQsummary will compute
one and try to save it. The summary contains (as of v0-02):

I ’rfsf’: boolean array, spin flipper on/off for pulse
I ’beam’: float64 array, mean beam monitor voltage per pulse
I 21-24: int32 arrays, sum of adc.values() per channel per pulse

The time bins used in the summing/averaging are stored with the arrays. The
detector data is guaranteed to fit in an int32: even summing 98 time bins from
adjacent pulses, log2(98 * 2**24) < 31.
A DAQsummary condenses a 1.3 GB run down to about 20 MB.

6 / 14

Code sample: input

In [0]: summary = DAQsummary(run=d.run)
In [0]: print find(summary[’beam’] < 1.5) # use 1.5V as the beam cutoff
[88 688 1288 1888 2488 3088 3688 4288 4697 4698 4699 ...]

Let’s look at the consective dropped pulses around 4700
In [0]: interval = r_[4694:4702] # a helpful numpy range operator

First some plots of the beam monitor
In [0]: plot(summary[’beam’].tbins.flatten() + interval, # xdata, minor ugh

...: summary[’beam’][interval], # ydata

...: ’o’, label=’mean beam current’, alpha=0.5)
In [0]: d[30](0).plot(pulselist=interval, fmt=’-’, label=’actual beam current’)
In [0]: d[30](0).plot(pulselist=interval, tbins=summary[’beam’].processed,

...: fmt=’.’, label=’included in average’)

Next some similar plots of the front-and-center wire
In [0]: plane,wire = 0,4
In [0]: plot(summary(plane,wire).tbins.flatten() + interval, # xdata, minor ugh

...: summary(plane,wire)[interval].volts(), # ydata

...: ’o’, label=’mean wire signal’, alpha=0.5)
In [0]: d(plane,wire).plot(pulselist=interval, fmt=’-’, label=’wire signal’)
In [0]: d(plane,wire).plot(pulselist=interval,

...: tbins=summary(plane,wire).processed,

...: fmt=’.k’, label=’included in average’)

7 / 14

Code sample: output

4694 4695 4696 4697 4698 4699 4700 4701 4702
pulse number = t * 60 Hz

0

1

2

3

4

si
g
n
a
l
(v

o
lt

s)
run 39390, plane 0, wire 4

mean beam current
actual beam current
included in average
mean wire signal
wire signal
included in average

8 / 14

Asymmetry computation: formalism

Definitions and assumptions

Beam current I±

Beam polarization P±

i-th detector “efficiency” ei

Geometric sensitivity gi

Physics asymmetry A

Yield from i-th detector:

Y ±
i = ei I±

(
1+ giP±A

)
Spin flipper efficiency, detector
symmetry are good:

P+ ≈ −P−

gi ≈ −gj

Possible asymmetries

Abeam =
I+ − I−

I+ + I−

Wire asymmetry:

Ai =
Y +

i − Y −
i

Y +
i + Y −

i
=

Abeam + giPA
1+ AbeamgiPA

Ai + Aj ≈ 2Abeam + (gi + gj)PA

Ai − Aj ≈ 2giPA(1− A2
beam)

Ratio of pairs:

R+
ij = Y +

i /Y
+
j

ARij =
R+

ij − R−
ij

R+
ij + R−

ij
≈ 2giPA

1+ (giPA)2

Non-leading terms are a little iffy.

9 / 14

Caching evaluation of asymmetries on summary data

In [34]: summary = DAQsummary(run=14858)
In [35]: summary.keys()
[’rfsf’, ’beam’, 21, 22, 23, 24]

In [36]: summary._dispatch_table
{’miss’: <function n3he_mm.low_beam>,
’nearmiss’: <function n3he_mm.near_low_beam>,
’diff21’: <functools.partial at 0x2b45d60>,
’asym21’: <functools.partial at 0x2b54100>,
...}

Most runs from this era appear to have
the spin flipper phased different from
the fall runs. A configuration change?
In [45]: cp = [True, False]
In [46]: summary[’badrfsf’] = \

...: summary.rfsf_bad(correct_pattern=cp)

Calling this function ...
In [47]: summary(’asym’, plane=0, wire=4)
ADCdata([[2.29702134e-04],

[6.66346858e-04],
...,
[3.91685902e-04],
[-1.88695423e-04]])

... computes and stores intermediate results
In [48]: summary.keys()
[’rfsf’, ’beam’, 21, 22, 23, 24,
’badrfsf’, ’miss’, ’nearmiss’, ’good21’, ’pol’,
’diff21’, ’sum21’, ’asym21’]

Asymmetry computations are
done starting from the
“summed” data (the big fat
dots, one per pulse).

4694 4695 4696 4697 4698 4699 4700 4701 4702
pulse number = t * 60 Hz

0

1

2

3

4

si
g
n
a
l
(v

o
lt

s)

run 39390, plane 0, wire 4

mean beam current
actual beam current
included in average
mean wire signal
wire signal
included in average

Cuts at this stage are
I Nearby missed pulses. One

before miss is bad, five
after miss is good again.

I Spin flipper phase.
Apparently during the PC
data the spin flipper phase
was shifted compared to
now? 10 / 14

Run-level asymmetries in each channel

For each run, find individual asymmetries. This one is −9.4(4.6)× 10−6.

0 2000 4000 6000 8000 10000 12000
sequence number

0.002

0.001

0.000

0.001

0.002

a
sy

m
m

e
tr

y

run 14858, plane 0, wire 4: wire asymmetries

0 100200300400500600
sequences in bin

mean ± width

mean ± s.e.m.

Also find the combination asymmetries. Here’s A01 − A07 = 7.0(5.4)× 10−6

0 2000 4000 6000 8000 10000 12000
sequence number

0.002

0.001

0.000

0.001

0.002

a
sy

m
m

e
tr

y

run 14858, plane 0, wires 1,7: difference of wire asymmetries

0 100200300400500600
sequences in bin

mean ± width

mean ± s.e.m.

11 / 14

Combine run-level asymmetries across dataset

Combine run-level asymmetries over many runs. Single-wire asymmetries: ugh.

14800 15000 15200 15400 15600
run number

0.00015

0.00010

0.00005

0.00000

0.00005

0.00010

0.00015

a
sy

m
m

e
tr

y
plane 0, wire 4: wire asymmetries

0.0 0.5 1.0 1.5 2.0 2.5
weighted freq 1e12

mean ± width

garbage

The wire difference asymmetries are drawn from a simpler distribution.

14800 15000 15200 15400 15600
run number

0.00002

0.00001

0.00000

0.00001

0.00002

a
sy

m
m

e
tr

y

plane 0, wires 1,7: wire asymmetry differences

0.0 0.5 1.0 1.5
weighted frequency 1e12

mean ± width

error-weighted mean

12 / 14

Some warts still included

The error-weighted average for the (purple) asymmetry difference is

A01 − A07 = (7.3± 1.8)× 10−7

with χ2/d.o.f. = 994/895. Not bad!

14800 15000 15200 15400 15600 15800
run number

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

a
sy

m
m

e
tr

y

some warts still included

plane 0, wires 1,7: wire asymmetry differences

0.0 0.5 1.0 1.5
weighted frequency 1e12

mean ± width

error-weighted mean

No further cuts so far.

13 / 14

So close, but not there yet

Current status
I Have computed results for 896

runs in the parity-conserving
configuration 14785–15784

I wire asymmetries (144)
I conjugate-pair sums of wire

asymmetries (64)
I conjugate-pair differences of

wire asymmetries (64)
I asymmetries of conjugate-pair

signal ratios (64)

I Asymmetry computation from
completed run summaries at rate
of about 10/minute

In progress

I Currently computing run
summaries at 100–150 per
hour, with 20k/40k completed.

I Nice plotting/tabulating of
existing results (bummer)

I More results: after holiday

Not done
I Geometry factors
I Correlations

14 / 14

	Python analyzer and data model
	Asymmetry computation
	Results (a tease)

