Data Acquisition System(DAQ) for the n-³He Experiment at SNS

Latiful Kabir

University of Kentucky

Yearly Committee Meeting UKY, September 3rd, 2014

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

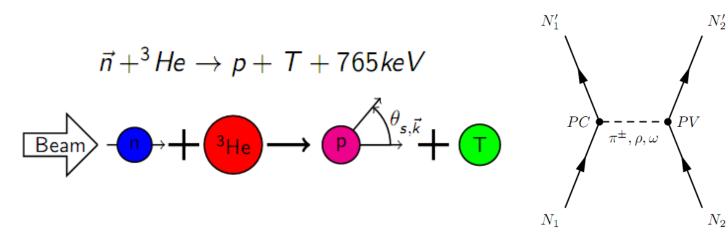
Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging -Instrumental Asymmetry

<u>Outline</u>

 \Box The n-³He experiment - Motivation -Experimental Setup \Box DAQ for n-³He experiment -Expectations -ADC modules -A Complete Network Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging -Instrumental Asymmetry Future Plan

DAQ for n³He

Outline


The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging -Instrumental Asymmetry

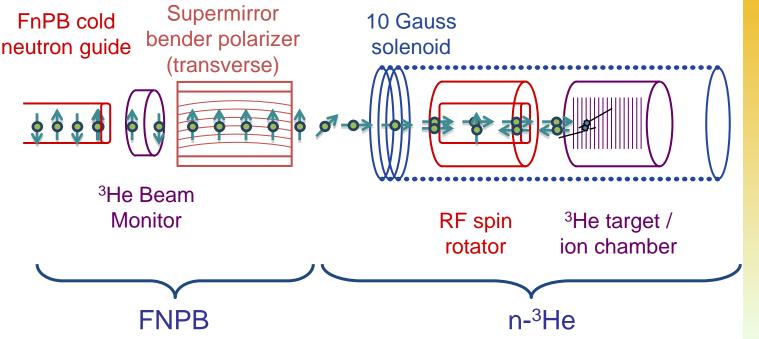
The n-³He Experiment

High-precision measurement motivated to probe the hadronic weak interaction by measuring the parity violating asymmetry of the proton in the reaction -

Expected to be extremely small (of the order 10⁻⁷)
 Goal is to measure an asymmetry in the reaction to a precision of 2 x 10⁻⁸

DAQ for n³He

Outline


The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging

-Instrumental Asymmetry

Experimental Setup

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging -Instrumental Asymmetry

- n-³He is using a spin flipper with transverse windings which allows for both longitudinal and transverse spin rotation.
- \square ³He ion chamber both target and detector.
- Detectors work in current mode.

DAQ for n-³He – Expectations in general

- Large amount of data, high sample rate but very low ADC noise.
- □ High channel density with simultaneous input.
- □ Jitter of the order of nanoseconds.
- □ Maximum sampling rate but the file size manageable /durable.
- \Box Triggering using software taking accelerator T₀ as input.
- □ Can take data only in our region of interest.
- Time bin and the number of entries per run can be adjusted.
- \Box Synchronization of all the ADC modules with T₀
- Checksum algorithm to detect corrupt data .
- Built in event header.

DAQ for n³He

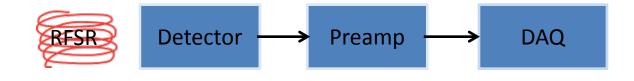
Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging -Instrumental Asymmetry

DAQ for n-³He – Expectations for systematics


□ 1st plane of the detector : 10 V \rightarrow Full Scale

Back plane of the detector: 0.1% of Full Scale

- □ Size of asymmetry: A~10⁻⁷
- \Box Expected uncertainty in asymmetry : $\Delta A = 2x \ 10^{-8}$ (Statistical)
- □ Expected maximum contribution from systematics:

$$\Delta A_{sys}$$
= 10% of ΔA

 \Box Expected Δ A_{sys} < 10⁻⁹

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

```
Measurements

-ADC noise and rise time

-Resynchronization

and Jitter

-Averaging

-Instrumental Asymmetry
```

Future Plan

Then the biggest challenge becomes achieving this Δ A_{sys}, provided that the spin flipper in the experiment will be turning on and off at 30Hz.

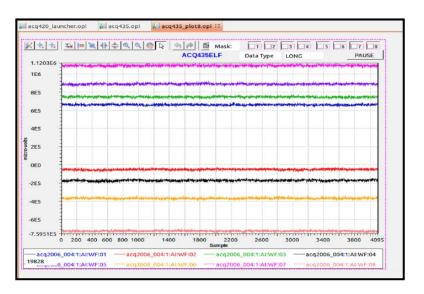
DAQ for n-³He -ADC Modules

Delta sigma technology based ADC (ACQ1002) by d-tAcq Solutions.

- Zynq 7000 series hybrid FPGA + 2 ARM CPU cores + FMC
- □ 24 bit ADC per channel for true simultaneous analog input.
- □ Maximum sampling rate 128 kSPS (min is 8 kSPS) per channel.
- □ 2x24 Channels per module.
- □ Signal to noise ratio is 104 dB (high speed) or 108 dB (high resolution)
- □ 1GB DDR memory on board.
- External clock, trigger, internal clock.
- Runs embedded Linux.
- □ Firmware on flash memory, can be updated easily.

DAQ for n³He

Outline


The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging -Instrumental Asymmetry

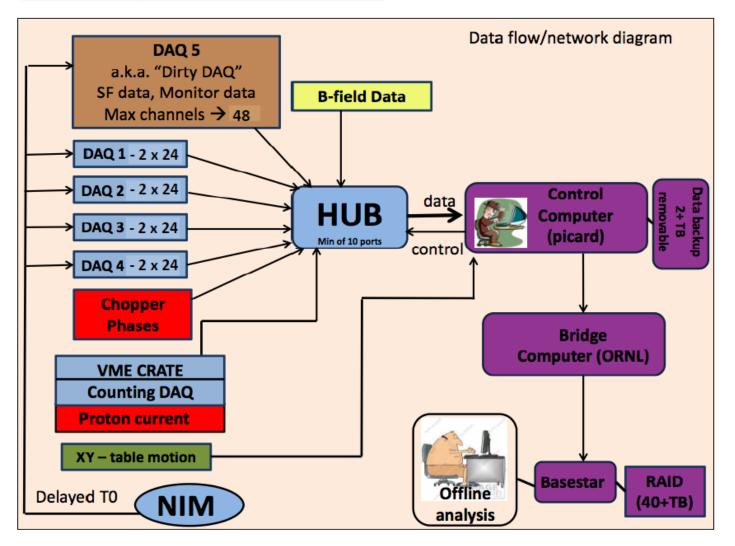
ADC Modules

- □ The DAQ can be accessed through ssh or console.
- □ It has several separate sites for capture and configuration.
- □ The data is transferred and saved to control computer using TCP/IP connection(e.g. netcat).
- □ Supports EPICS CSS for controlling the DAQ.
- Data and run time parameters can be viewed in real time using CSS.

		CS-Studio		- 0
acq420_launcher.opi	acq2006clktree.opi	acq435.opi 🛙		-
135250	ACQ435FMC acq2006			
clk_count	664	3431272130	49138604 H2	do
sample_count	: 🥚 180	290	10014 Hz	27
TRG	soft	dQ	fatting	CLKDIV
CLK	external	d1	falling	1 🚔
SYNC	internal	d0	falling	
EVENT1	disable	d0	falling	

DAQ for n³He

Outline


The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging -Instrumental Asymmetry

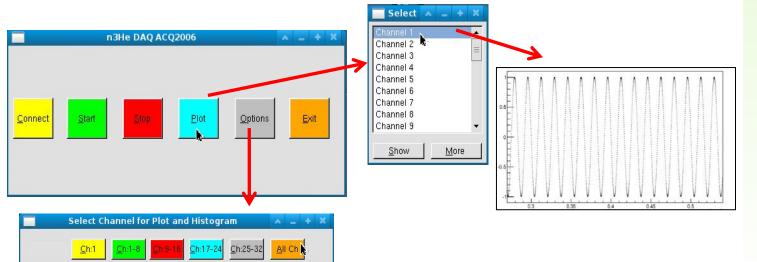
.

A Complete Network

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup


DAQ for n-³He -Expectations -ADC modules -A Complete Network

Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging -Instrumental Asymmetry

<u>Software</u>

- Analyze the binary data with ROOT without saving as root file.
 TBranchBinary
 - Allows one to interpret binary files as ntuples without actually reading them into an ntuple.
 - Gives access to all features of TTree.
 - Access to any ROOT classes.

Prototype GUI with DAQ control and online analysis.Prototype analysis library based on TBranchBinary.

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging

-Instrumental Asymmetry

Measurements : ADC noise and rise time

Bare ADC noise was measured to be 27micro volt at 50KHz sample rate.

Performance of ADC and its noise with different sample rate.

Based on counting statistics , running the DAQ at 50KHz and then averaging 20 successive points will give most optimal ADC noise.

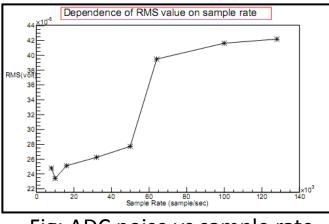
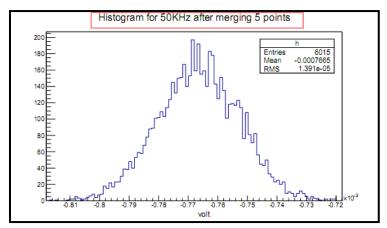




Fig: ADC noise vs sample rate

DAQ for n³He

Outline

- The n-³He experiment -Motivation -Experimental Setup
- DAQ for n-³He -Expectations -ADC modules
- -A Complete Network

Measurements -ADC noise and rise time -Resynchronization

- and Jitter
- -Averaging
- -Instrumental Asymmetry

Future Plan

Fig: ADC noise after merging 5 points

Measurements : ADC noise and rise time

The rise time is found to be as expected.

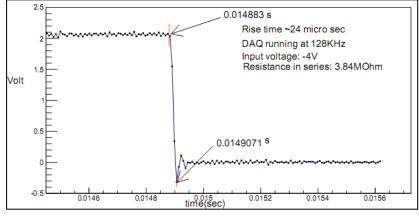


Fig: Plot for rise time

The autocorrelation plot confirms no apparent correlation for ADC noise.

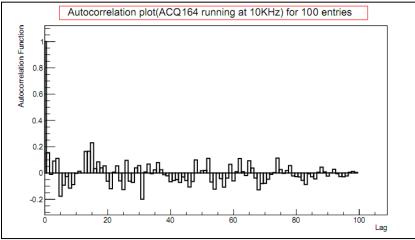
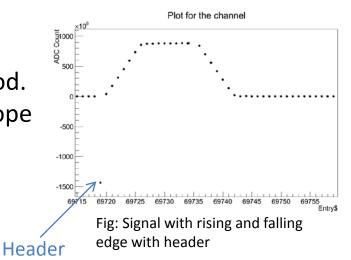


Fig: Autocorrelation plot

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup


DAQ for n-³He -Expectations -ADC modules -A Complete Network

Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging -Instrumental Asymmetry

Measurements : Resynchronization and Jitter

□60 Hz pulsed signal with ramp is analyzed.

- Each rising edge of the pulse is fitted to the linear equation y=ax+b using least square method. This gives x-intercept and the slope of the rising edge.
- For each fit ,the x-value for the header is subtracted from the X-intercept of the rising edge.
 This constitute: Δt-=t_i-t₀
 Where, t_i=Intercept from fit t₀= x-value for header
 This is done for all the pulses.
 - Δt vs pulse number is plotted.
 A histogram for all the Δt is drawn.

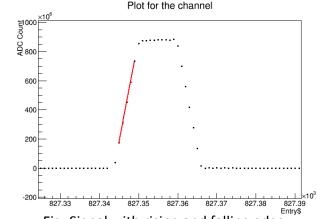
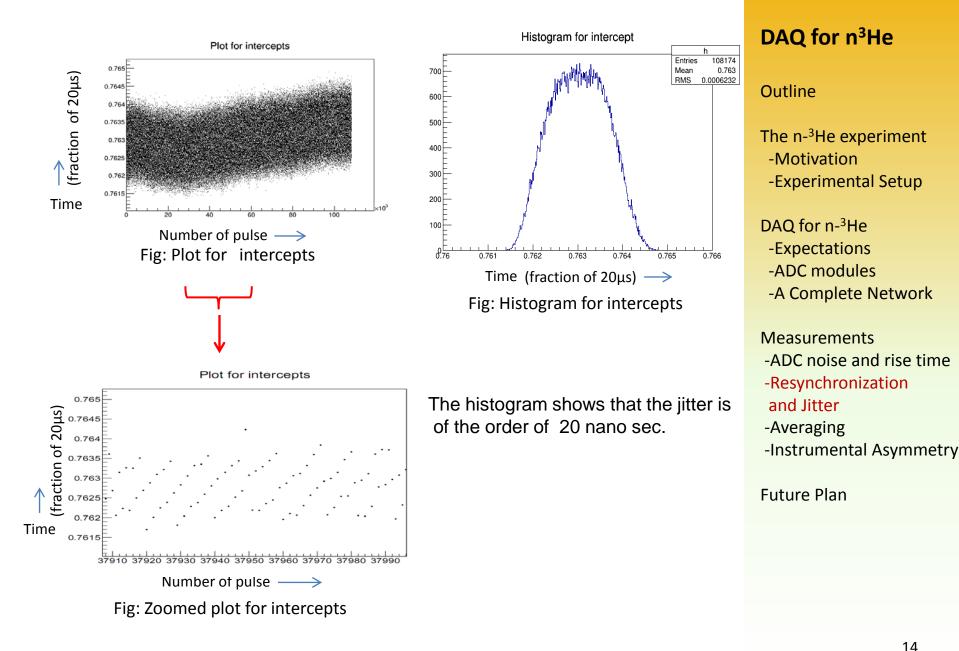


Fig: Signal with rising and falling edge

Units: X-axis: 1 Entry= 1 Sample= 1/50KHz =20µs Y-axis: 1 ADC count= 20Volt /2³² = 4.656 x10⁻⁰⁹ Volt

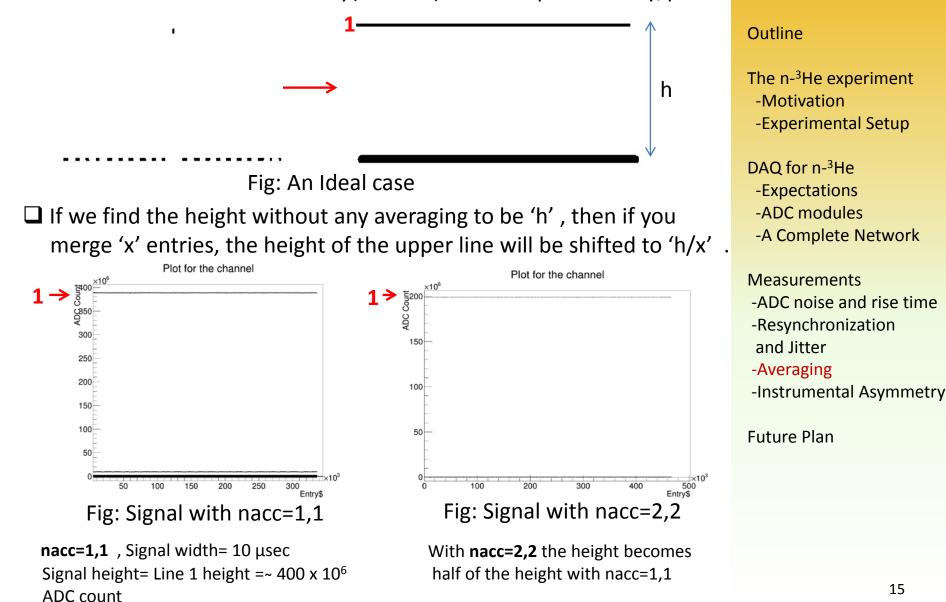
DAQ for n³He


Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

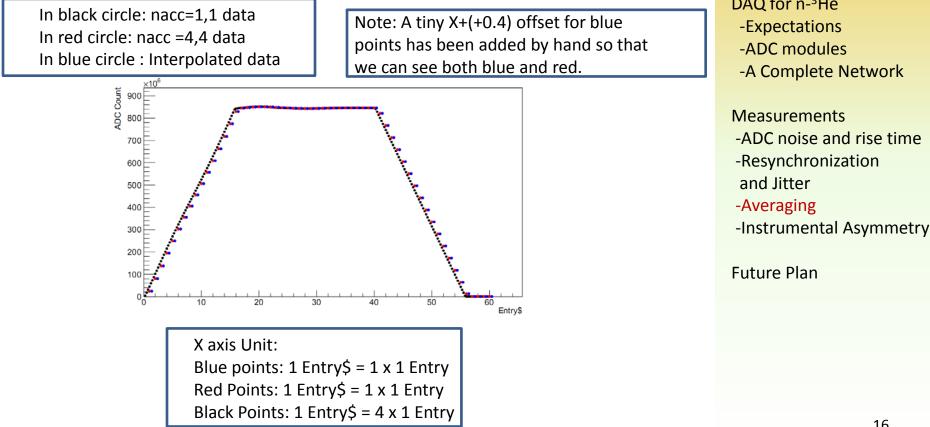
Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging -Instrumental Asymmetry


Measurements : Resynchronization and Jitter

14

Measurements : Averaging

Suppose we have a pulse/signal like the following where all entries are effectively(close to) zero except one entry/point.

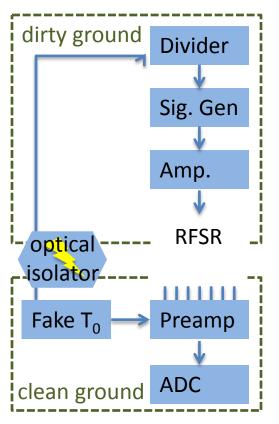

DAQ for n³He

Measurements : Averaging

Again in a separate analysis pulsed signal with ramp is recorded in resynchronized triggered mode.

Then on a single canvas we compare the plot for

- 1) The data set without averaging (nacc=1,1 data)
- 2) The data set with merging four points (nacc=4,4 data)
- 3) The data set obtained by taking average of four points
 - from first data set/without merge (Interpolated data).


Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

¹⁶

Instrumental asymmetries with RFSF

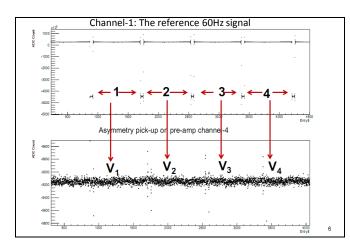
- Sources of false asymmetries:
- •Ground loops
- •Electrostatic couplings
- •Power supply couplings
- •Circuit to circuit couplings
- and many others

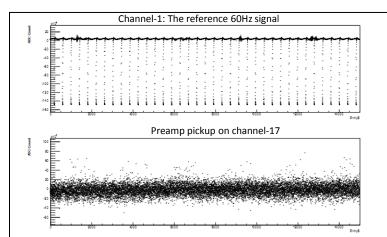
DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network


Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging -Instrumental Asymmetry


Instrumental asymmetries with RFSF

Took equal number of entries between two T₀ pulses.
 Subtracted two adjacent (ON/OFF)states then normalized by the full scale of the ADC(20 Volts)

 $A_1 = (V_1 - V_2)/20$ $A_2 = (V_3 - V_4)/20$ etc. Asymmetry, $A = (A_1 + A_2 + A_3 + + A_N)/N$

 To calculate uncertainty in false asymmetry, made a histogram for asymmetry of individual pair, A_K, k-1,2,....N
 Calculated width σ (sigma or RMS) of the histogram. Then, ΔA= σ /√N

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging -Instrumental Asymmetry

Instrumental asymmetries with RFSF

Analysis of 5 hour of data at 25KHz shows that-

Asymmetry = 2.64 x 10⁻¹⁰ ± 1.64 x 10⁻¹⁰

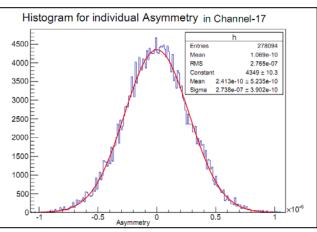


Fig: Typical histogram for asymmetry for a channel

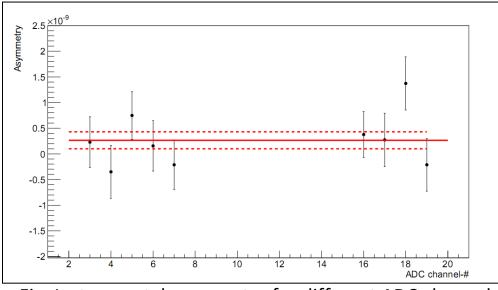


Fig: Instrumental asymmetry for different ADC channels

DAQ for n³He

Outline

- The n-³He experiment -Motivation -Experimental Setup
- DAQ for n-³He -Expectations -ADC modules -A Complete Network
- Measurements -ADC noise and rise time -Resynchronization and Jitter
- -Averaging
- -Instrumental Asymmetry

Future Plan

Conclusion :

We have a DAQ system which fulfills all of our expectations and gives instrumental asymmetry as small as (2.64±1.64)x10⁻¹⁰ Thus we achieved our goal.

Future Plan :

- Measure the instrumental asymmetry with the whole system.
- Data taking starts in one month.
- Analysis of the data.

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging -Instrumental Asymmetry

n-³He Collaboration

INSTITUTION	RESEARCHER	CATEGORY	2014 EFFORT			
DUKE UNIVE	RSITY, TRIANGLE UNI	VERSITIES NUCLEAR	LABORATORY			
	PIL-NEO SEO	RESEARCH STAFF	10			
ISTITUTO NAZIONALE DI FISICA NUCLEARE, SEZIONE DI PISA						
	MICHELE VIVIANI	RESEARCH STAFF	15			
OAK RIDGE	NATIONAL LABORATO	RY				
	SEPPO PENTILLÄ	RESEARCH STAFF	70			
	DAVID BOWMAN	RESEARCH STAFF	70			
	VINCE CIANCIOLO	RESEARCH STAFF	10			
UNIVERSITY	OF KENTUCKY					
	CHRIS CRAWFORD	FACULTY	50			
	KABIR LATIFUL	GRAD STUDENT	100			
WESTERN K	ENTUCKY UNIVERSITY	r				
	IVAN NOVIKOV	FACULTY	70			
	TBD	UNDERGRADUATE	100			
UNIVERSITY	OF MANITOBA					
	MICHAEL GERICKE	FACULTY	30			
	V. TVASKIS	POSTDOC	10			
	MARK MCCREA	GRAD STUDENT	100			
	CARLOS OLGUIN	GRAD STUDENT	100			
UNIVERSIDA	D NACIONAL AUTÓNO	MA DE MÉXICO				
	LIBERTAD BARON	FACULTY	50			
	ANDRÉS NARANJAS	GRAD STUDENT	100			
UNIVERSITY	OF NEW HAMPSHIRE					
	JOHN CALARCO	FACULTY	50			
UNIVERSITY	OF SOUTH CAROLINA					
	VLADIMIR GUDKOV	FACULTY	5			
	YOUNG-HO SONG	POSTDOC	5			
UNIVERISTY	OF TENNESSEE					
*	GEOFF GREENE	FACULTY	30			
	NADIA FOMIN	FACULTY	30			
	IRAKLI GARRIBALDI	Postdoc	50			
	CHRIS HAYES	GRAD STUDENT	100			
	CHRIS COPPOLA	GRAD STDUENT	100			
UNIVERISTY	OF TENNESSEE AT CI	HATTANOOGA				
*	JOSH HAMBLEN	FACULTY	75			
	CALEB WICKERSHAM	UNDERGRADUATE	100			
UNIVERSITY	OF VIRGINIA					
	S. BAESSLER	FACULTY	20			

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging -Instrumental Asymmetry

Backup Slides

Autocorrelation Plots for ACQ164 ADC Noise

1.Formalism Followed:

Autocorrelation plots are formed by

• Vertical axis: Autocorrelation coefficient

 $R_h = C_h / C_0$

where C_h is the autocovariance function

$$C_{h} = \frac{1}{N} \sum_{t=1}^{N-h} (Y_{t} - \bar{Y})(Y_{t+h} - \bar{Y})$$

and C_{θ} is the variance function

$$C_0 = \frac{\sum_{t=1}^{N} (Y_t - \overline{Y})^2}{N}$$

Note that R_h is between -1 and +1.

• Horizontal axis: Time lag h (h = 1, 2, 3, ...)

2. In the data set there were few (3 or 4) values which were completely out of any scale (10⁹ times out of scale), those ADC values were replaced by hand by the average of previous and next ADC value.

3. X-axis unit: 1 lag= 100 micro second(for 10Khz) or 20 micro second (for 50KHz), Y-axis unit: Unitless

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

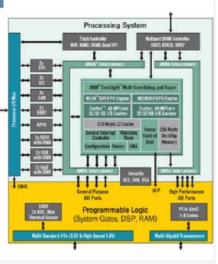
Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging -Instrumental Asymmetry

Zynq-7000 All Programmable SoC

zma zma

Based on the Xilinx All programmable SoC architecture, the Zynq®-7000 All Programmable SoCs enable extensive system level differentiation, integration, and flexibility through hardware, software, and I/O programmability.

Using the Zynq-7000 platform, you can design smarter systems with tightly coupled software based control and analytics with real time hardware-based processing and optimized system interfaces — with vastly lower BOM costs, lower NRE costs, lower design risk, and of course much faster time to market. All six Zynq devices (Z-7010, Z-7015, Z-7020, Z-7030, Z-7045, Z-7100) are optimized for specific combinations of system power, cost, and size to meet the needs of smarter control, smarter vision and smarter networks.


This comprehensive Platform offers:

- Silicon Devices Zynq-7000 Full-Featured Processing Platform
- Development Platforms Traditional hardware development and virtual development platforms
- Operating Systems Open Source Linux, Android, FreeRTOS
- Design Tools Vivado® Design Suite, Xilinx SDK, PetaLinux SDK
- IP Plug and Play

Smartest Solution for a Wide Range of System Design Problems

Xilinx Zynq-7000 All Programmable SoCs are the Smartest Solution for a wide range of system-design problems in all markets, across the entire application spectrum. Learn more about the 9 reasons why:

Enabling Smarter Systems	Most efficient ARM + FPGA for analytics & control Extensive OS, middleware & stack ecosystem Highest level of security & reliability Learn More >	
Unmatched Performance and Power	Highest Performance SoC Largest & Highest Performance Memory System Lowest Power and Fastest Logic Fabric Learn More >	
Proven Productivity	 Industry-leading high-level synthesis Widest selection of software environments and tools Largest portfolio of IP, design kits, and reference designs Learn More > 	

Click to expand

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

Measurements -ADC noise and rise time -Resynchronization and Jitter

- -Averaging
- -Instrumental Asymmetry

Recently, there has emerged a greater need for different front panel IO functionality within systems. Typically, this front panel IO functionality was fixed on 3U or 6U form factor cards, or it was configured with PMC or XMC modules. Previously, 3U and 6U form factor card design used a fixed front panel IO, which addressed a particular function. Changing the front panel IO functionality meant replacing the 3U or 6U cards. PMC and XMC modules provided configurable front panel IO for 3U and 6U form factor cards. However, PMC and XMC modules use much of the 3U and 6U carrier card area.

FPGA Mezzanine Card, or FMC, as defined in VITA 57, provides a specification describing an I/O mezzanine module with connection to an FPGA or other device with reconfigurable I/O capability. The low profile design allows use on popular industry standard slot card,

4DSP: FMC104

Alpha Data: ADPE-XRC-5T

Faster Technology: FM-S18

DAQ for n³He

Outline

The n-³He experiment -Motivation -Experimental Setup

DAQ for n-³He -Expectations -ADC modules -A Complete Network

Measurements -ADC noise and rise time -Resynchronization and Jitter -Averaging -Instrumental Asymmetry

blade and motherboard form factors, including VME, VPX, CompactPCI, AdvancedTCA, MicroTCA, PCI, PXI, and many other low profile motherboards. The compact size is highly adaptable to many configuration needs and compliments existing common low profile mezzanine technology such as PMC, XMC, and AMC.