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The n-*He Experiment

[ High-precision measurement motivated to probe the hadronic
weak interaction by measuring the parity violating asymmetry
of the proton in the reaction -

4 N}

f+3He — p+ T + 765keV

HSfE rep -
Beam —.—>—|—.—) ﬂ _I_ @ rt pow

N, Ny

J Expected to be extremely small (of the order 10 /)
 Goal is to measure an asymmetry in the reaction to a
precision of 2 x 10®
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Experimental Setup

Supermirror

FnPB cold : 10 Gauss
neutron guide Pender polarizer solenoid
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3He Beam
Monitor RF spin 3He target /
rotator ion chamber
- _ _
Y Y
FNPB n-3He

O n-3He is using a spin flipper with transverse windings
which allows for both longitudinal and transverse spin
rotation.

( 3He ion chamber — both target and detector.

O Detectors work in current mode.
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DAQ for n-3He — Expectations in general

 Large amount of data, high sample rate but very low ADC
noise.
[ High channel density with simultaneous input.

[ Jitter of the order of nanoseconds.

[ Maximum sampling rate but the file size manageable /durable.

 Triggering using software taking accelerator T, as input.

d Can take data only in our region of interest.

[ Time bin and the number of entries per run can be adjusted.
 Synchronization of all the ADC modules with T,

1 Checksum algorithm to detect corrupt data .

[ Built in event header.
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DAQ for n-3He —Expectations for systematics

DAQ for n3He
O 15t plane of the detector : 10 V - Full Scale

Outline
dBack plane of the detector: 0.1% of Full Scale
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1 Size of asymmetry: A~10"7

1 Expected uncertainty in asymmetry : AA = 2x 108 (Statistical) DAQ for n-3He

. . . ) -Expectations
D Expected maximum contribution from systematlcs: -ADC modules

-A Complete Network
DA, = 10% of AA
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Then the biggest challenge becomes achieving this A A, ¢, provided
that the spin flipper in the experiment will be turning on and off at
30Hz.



DAQ for n-*He -ADC Modules

O Delta sigma technology based ADC (ACQ1002) by 2'_",“""
d-tAcq Solutions. Soluriony
 Zynqg 7000 —series hybrid FPGA + 2 ARM CPU cores + FMC
1 24 bit ADC per channel for true simultaneous analog input.
O Maximum sampling rate 128 kSPS (min is 8 kSPS) per channel.
[ 2x24 Channels per module.
[ Signal to noise ratio is 104 dB (high speed) or 108 dB
(high resolution)
(J 1GB DDR memory on board.
O External clock, trigger, internal clock.
M Runs embedded Linux.
M Firmware on flash memory, can be updated easily.
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ADC Modules

[ The DAQ.can be accessed through ssh or console.
U It has several separate sites for capture and configuration.
U The data is transferred and saved to control computer using
TCP/IP connection(e.g. netcat).
1 Supports EPICS CSS for controlling the DAQ.
(1 Data and run time parameters can be viewed in real time

using CSS.
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A Complete Network

DAQ1-2x24

> DAQ2 -2x24

> DAQ3 -2x24

Data flow/network diagram

B-field Data

HUB

> DAQ4 -2 x24

Min of 10 ports

VME CRATE
Counting DAQ

Delayed TO @
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Software

Analyze the binary data with ROOT without saving as root file.

O TBranchBinary
- Allows one to interpret binary files as ntuples without
actually reading them into an ntuple.
- Gives access to all features of TTree.
- Access to any ROOT classes.

dPrototype GUI with DAQ control and online analysis.
dPrototype analysis library based on TBranchBinary.
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Measurements : ADC noise and rise time

(dBare ADC noise was measured
to be 27micro volt at 50KHz
sample rate.

(JPerformance of ADC and its

noise with different sample rate.

(dBased on counting statistics , running the DAQ at 50KHz and
then averaging 20 successive points will give most optimal ADC

noise.

_ | Dependence of RMS value on sample rate
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Fig: ADC noise after merging 5 points
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Measurements : ADC noise and rise time

1 The rise time is found to be as expected.

2'5: /0.0148835 DAQ for n3He
L Rise time ~24 micro sec

DAQ running at 128KHz

Input voltage: -4V o
Resistance in series: 3.84MOhm Outline

The n-3He experiment
-Motivation
-Experimental Setup

0.01490718

05 BT J— T t|lrrqg(1§elz:} —SeE e DAQ for n-3He
. . . -Expectations
Fig: Plot for rise time _ADC modules
[ The autocorrelation plot confirms no apparent correlation for *A Complete Network
ADC noise. Measurements

| Autocorrelation plot(ACQ164 running at 10KHz) for 100 entries | . . .
- -ADC noise and rise time

-Resynchronization

Autocorrelation Function

oo and Jitter
osf- -Averaging
oal- -Instrumental Asymmetry

Future Plan

Fig: Autocorrelation plot
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Measurements : Resynchronization and Jitter

60 Hz pulsed signal with ramp is analyzed.

[ Each rising edge of the pulse
is fitted to the linear equation l:
y=ax+b using least square method.
This gives x-intercept and the slope
of the rising edge.

[ For each fit ,the x-value for the

-1000—

Plot for the channel

.........

15007 °

header is subtracted from the
X-intercept of the rising edge.
This constitute: At-=t-t,

Header

Fig: Signal with rising and falling
edge with header

Plot for the channel

Entry3

Where, t=Intercept from fit i

t,= x-value for header <
This is done for all the pulses.

At vs pulse number is plotted.

600—
400 —

200—

O A histogram for all the At is drawn. .

-200

827.33 827.34 827.35

827.36 827.37 827.38

827.39
Entry$

Fig: Signal with rising and falling edge

Units:

X-axis: 1 Entry= 1 Sample= 1/50KHz =20us
Y-axis: 1 ADC count= 20Volt /232= 4.656 x10%° Volt

x10°
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Measurements : Resynchronization and Jitter

Plot for intercepts
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Fig: Zoomed plot for intercepts
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Fig: Histogram for intercepts

The histogram shows that the jitter is
of the order of 20 nano sec.
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Measurements : Averaging

1 Suppose we have a pulse/signal like the following

where all entries are effectively(close to) zero except one entry/point.

: 1

Fig: An Ideal case
4 If we find the height without any averaging to be ‘h’, then if you

merge ‘x’ entries, the height of the upper line will be shifted to ‘h/x’ .

Plot for the channel
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Fig: Signal with nacc=1,1

nacc=1,1 , Signal width= 10 psec
Signal height= Line 1 height =~ 400 x 10°
ADC count

Plot for the channel
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Fig: Signal with nacc=2,2

With nacc=2,2 the height becomes
half of the height with nacc=1,1
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Measurements : Averaging

1 Again in a separate analysis pulsed signal with ramp is recorded in
resynchronized triggered mode.
1 Then on a single canvas we compare the plot for
1) The data set without averaging (nacc=1,1 data)
2) The data set with merging four points (nacc=4,4 data)
3) The data set obtained by taking average of four points
from first data set/without merge (Interpolated data).

In black circle: nacc=1,1 data Note: A tiny X+(+0.4) offset for blue

In red circle: nacc =4,4 data points has been added by hand so that
In blue circle : Interpolated data we can see both blue and red.
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X axis Unit:

Blue points: 1 EntryS =1 x 1 Entry
Red Points: 1 EntryS =1 x 1 Entry
Black Points: 1 EntryS =4 x 1 Entry

DAQ for n3He

Outline

The n-3He experiment
-Motivation
-Experimental Setup

DAQ for n-3He
-Expectations
-ADC modules
-A Complete Network

Measurements
-ADC noise and rise time
-Resynchronization
and Jitter
-Averaging
-Instrumental Asymmetry

Future Plan

16



Instrumental asymmetries with RFSF

dirty ground

"

Divider

v

Sig. Gen

O €

-/‘optical ----- RFSR -

. \'
~-isolator----— _
I RN

Fake T, —> Preamp
¥

clean ground ADC

Sources of false asymmetries:

*Ground loops
*Electrostatic couplings
ePower supply couplings
Circuit to circuit couplings
* and many others .... ...
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Instrumental asymmetries with RFSF

1 Took equal number of entries between two T, pulses.
(1 Subtracted two adjacent (ON/OFF)states then normalized by
the full scale of the ADC(20 Volts)
A2=(V3_V4)/20 ....etC.
Asymmetry, A=(A+A,+A+......+A)/N
1 To calculate uncertainty in false asymmetry, made a histogram
for asymmetry of individual pair, A, k-1,2,....N
[ Calculated width o (sigma or RMS) of the histogram. Then,

AA= o /VN

Channel-1: The reference 60Hz signal Channel-1: The reference 60Hz signal

ﬂ<—1—)}(<—2—>% <_3_”‘<_4_)"‘.

T i

e e e e e e - e e e e e e e e

Asymmetry pick-up or| pre-amp channef-4

Preamp pickup on channel-17

'Hﬁw
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Instrumental asymmetries with RFSF

Histogram for individual Asymmetry in Channel-17

U Analysis of 5 hour of data at 25KHz| .-

| h
Entries 278084
Mean 1.068e-10

shows that-
Asymmetry = 2.64 x 100+ 1.64 x 1029| =t

1000

500

gl | e 1 x10®

-1 -0.5 Asymmetry 0 0.5 1

Fig: Typical histogram for asymmetry
for a channel
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Fig: Instrumental asymmetry for different ADC channels
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Future Plan

Conclusion :

 We have a DAQ system which fulfills all of our expectations
and gives instrumental asymmetry as small as (2.64+1.64)x1010
Thus we achieved our goal.

Future Plan:

1 Measure the instrumental asymmetry with the whole

system.

 Data taking starts in one month.
[ Analysis of the data.
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Backup Slides

. | DAQ for n3He
Autocorrelation Plots for ACQ164 ADC Noise
1.Formalism Followed: SUie
Autocorrelation plots are formed by The n-3He experiment
-Motivation

« Vertical axis: Autocorrelation coefficient
-Experimental Setup

Ry =CylCy
where Cj, is the autocovariance function DAQ for n-3He
- -Expectations
Cn=?z] (Y, = Y)Yy = 1) -ADC modules
(=

-A Complete Network

and Cj is the variance function

T e el Measurements
2D . . .
Co = B v— -ADC noise and rise time
-Resynchronization
Note that R;, is between -1 and +1. .
and Jitter
« Horizontal axis: Time lag 2 (h=1,2,3,..) —Averaging
2. In the data set there were few (3 or 4) values which were completely out of any scale (10” times out of scale), those ADC -Instrumental Asymmetry

values were replaced by hand by the average of previous and next ADC value.

3. X-axis unit: 1 lag= 100 micro second(for 10Khz) or 20 micro second (for 50KHz), Y-axis unit: Unitless Future Plan
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Zyng-7000 All Programmable SoC

Based on the Xilinx All programmable SoC architecture, the Zyng®-7000 All o iy e copmcipocem
Programmable SoCs enable extensive system level differentiation, integration, and
flexibility through hardware, software, and 1/O programmability.

Using the Zyng-7000 platform, you can design smarter systems with tightly coupled
software based control and analytics with real time hardware-based processing and
optimized system interfaces — with vastly lower BOM costs, lower NRE costs, lower
design risk, and of course much faster time to market. All six Zyng devices (Z-7010,
Z-7015, 2-7020, Z2-7030, Z-7045, Z-7100) are optimized for specific combinations of
system power, cost, and size to meet the needs of smarter control, smarter vision and
smarter networks.

This comprehensive Platform offers:

e Silicon Devices - Zyng-7000 Full-Featured Processing Platform )
Click to expand

« Development Platforms - Traditional hardware development and virtual
development platforms

e Operating Systems - Open Source Linux, Android, FreeRTOS
« Design Tools - Vivado® Design Suite, Xilinx SDK, PetaLinux SDK

« IP-Plug and Play

Smartest Solution for a Wide Range of System Design Problems

Xilinx Zyng-7000 All Programmable SoCs are the Smartest Solution for a wide range of system-design problems in all markets, across the entire application
spectrum. Learn more about the 9 reasons why-

= Maost efficient ARM + FPGA for analytics & control

» Extensive OS, middleware & stack ecosystem
= Highest level of security & reliability

Enabling Smarter Systems

Learn More >

» Highest Performance SoC
= Largest & Highest Performance Memory System
 Lowest Power and Fastest Logic Fabric

Unmatched Performance and Power

Learn More =

= Industry-leading high-level synthesis
« Widest selection of software environments and tools
« Largest portfolio of IP, design kits, and reference designs

Proven Productivity

Learn More >

It Sacadard 103 1107 b Fgd-Spend LIV Mt bagan? D anenivens
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z=H=NAC

™

Recently, there has emerged a
greater need for different front
panel 10 functionality within
systems. Typically, this front panel
10 functionality was fixed on 3U or
6U form factor cards, or it was
configured with PMC or XMC
modules. Previously, 3U and 6U
form factor card design used a fixed
front panel 10, which addressed a
particular function. Changing the
front panel I0 functionality meant
replacing the 3U or 6U cards. PMC
and XMC modules provided
configurable front panel 10 for 3U
and 6U form factor cards. However,
PMC and XMC modules use much of
the 3U and 6U carrier card area.

FPGA Mezzanine Card, or FMC, as
defined in VITA 57, provides a
specification describing an I/0
mezzanine module with connection
to an FPGA or other device with
reconfigurable I/O capability. The
low profile design allows use on
popular industry standard slot card,

blade and motherboard form factors, including VME, VPX, CompactPCI, AdvancedTCA, MicroTCA, PCI, PXI, and many
other low profile motherboards. The compact size is highly adaptable to many configuration needs and compliments

Alpha Data: ADPE-XRC-5T

Xilime FMC-5M

existing common low profile mezzanine technology such as PMC, XMC, and AMC.

EERER

4D5P: FMC104

Faster Technology: FM-518
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