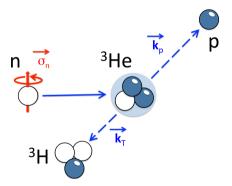
## Characterization of Noise Sources in the n3He Parity Violating Asymmetry Measurement

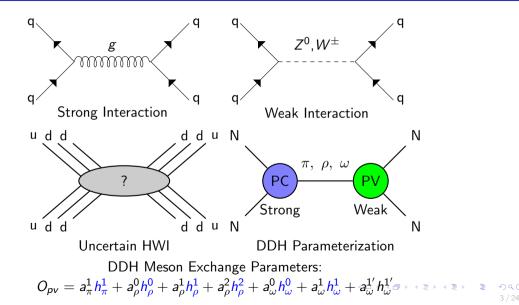
### Mark McCrea University of Kentucky

for the n3He Collaboration

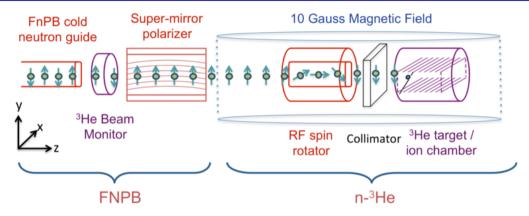

April 16, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## n3He Introduction


The n3He experimental goal is to make a high precision measurement of the parity violating directional asymmetry in the proton emission direction from the reaction

$$\vec{n}$$
 +<sup>3</sup> He  $\rightarrow$  p + T + 765 keV



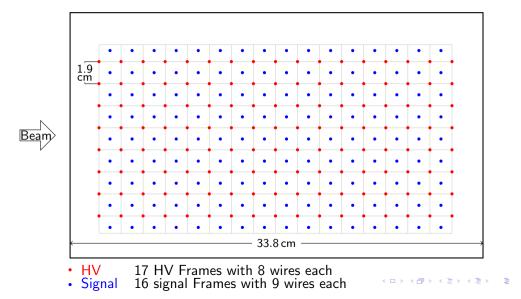

The asymmetry is expected to be small around  $10^{-7}$  and our goal is to measure it to  $2 \times 10^{-8}$ .

### Theoretical Motivation

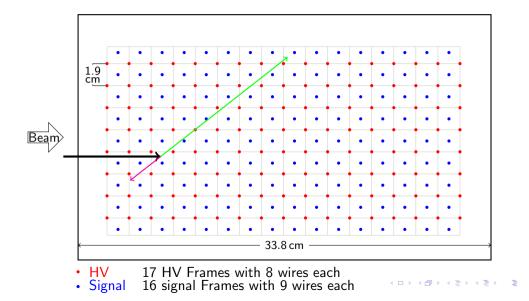


## n3He Schematic Diagram

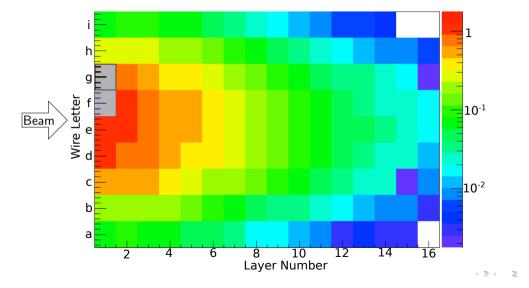



- located at the Oak Ridge National Laboratory (ORNL) in Tennessee
- 60 hertz pulsed spallation source
- n3He took data during 2015 on the Fundamental Neutron Physics Beamline
- 20 K liquid hydrogen moderator for cold neutron beam lines

### Target Chamber

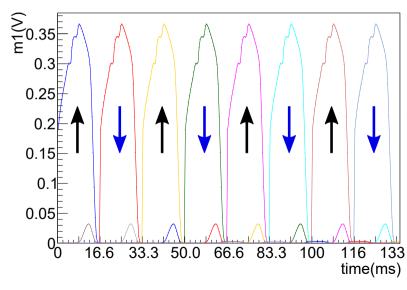



- Multi-wire proportional chamber
- Combined Target and Detector
- 0.47 atm pure He-3 fill gas
- operated near unity gain
- 144 total signal wires


### n3He Target Chamber Schematic



### n3He Target Chamber Schematic




### Measured Charge Distribution in the Chamber



<sup>8 / 24</sup> 

### 60 Hz Neutron Pulse Spin Sequence



- ↑ indicates is a neutron pulse with the spin flipper off and the neutron polarization orientated parallel to gravity
- ↓ indicates a pulse with the spin flipper on the neutron polarization anti-parallel

A D > < A</p>

For the signal wire i the mean wire yield for a pulse k is:

$$\bar{Y}_i = \frac{1}{40} \sum_{t=5}^{44} Y_{i,t} = S_i + b_i \tag{1}$$

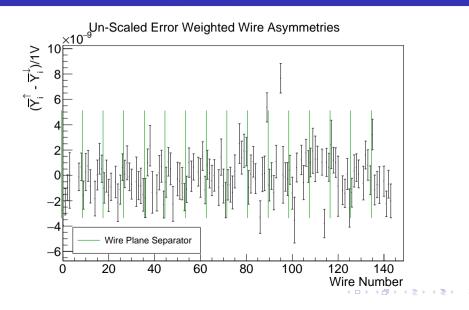
where  $S_i$  is the neutron contribution to the signal and  $b_i$  is the electronic pedestals. The single wire physics asymmetry is calculated for a pairs of consecutive neutron pulses with the spin sequence  $\uparrow\downarrow$ :

$$A_i^{phys} = \frac{\bar{Y}_i^{\uparrow} - \bar{Y}_i^{\downarrow}}{\bar{Y}_i^{\uparrow} + \bar{Y}_i^{\downarrow}} \approx \frac{1}{G_i} \frac{S_i^{\uparrow} - S_i^{\downarrow}}{S_i^{\uparrow} + S_i^{\downarrow}} + \frac{1}{G_i} \frac{b_i^{\uparrow} - b_i^{\downarrow}}{S_i^{\uparrow} + S_i^{\downarrow}}$$
(2)

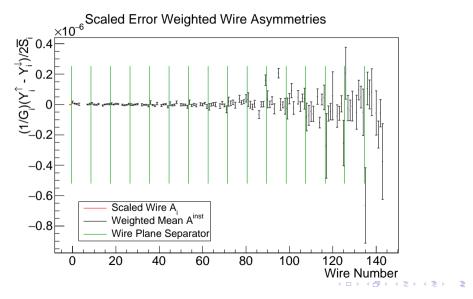
<□ → < 団 → < 臣 → < 臣 → < 臣 → 臣 → ○ Q (?) 10/24

### Instrumental Asymmetry Calculations

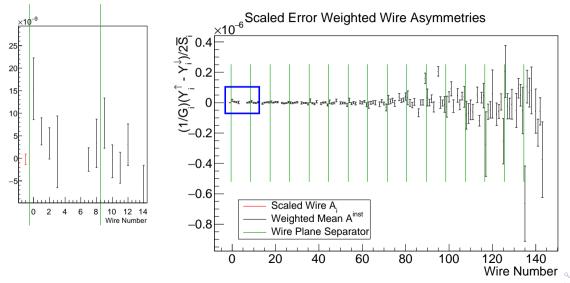
To measure the effect on the uncertainty of the physics asymmetry by the pedestals beam off data was taken at 1 week intervals during data taking with an instrumental asymmetry calculated for pairs of consecutive neutron pulses with the spin sequence  $\uparrow\downarrow$ :


$$A_i^{inst} = \frac{1}{G_i} \frac{\bar{Y}_i^{\uparrow} - \bar{Y}_i^{\downarrow}}{2\bar{S}_i}$$
(3)

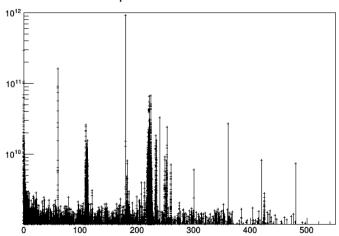
where  $\overline{S}_i$  is the mean wire signal over all beam on running An additional check called the Null Asymmetry was calculated using four pulse sequences,  $\uparrow \downarrow \uparrow \downarrow$  to calculate the asymmetries:


$$A_i^{null} = \frac{1}{G_i} \frac{\bar{Y}_i^{\uparrow} - \bar{Y}_i^{\prime\uparrow}}{2\bar{S}_i} \qquad \qquad A_i^{\prime null} = \frac{1}{G_i} \frac{\bar{Y}_i^{\downarrow} - \bar{Y}_i^{\prime\downarrow}}{2\bar{S}_i} \qquad \qquad (4)$$

which should be zero if there are no non-spin correlated asymmetries.


### Un-Scaled Wire Instrumental Asymmetry Comparison




## Scaled Wire Instrumental Asymmetry Comparison



### Scaled Wire Instrumental Asymmetry Comparison



## FFT Analysis Results



FFT-SpecDens-r17785-d21-c1-w1

### Features of Note:

- large 180 Hertz peak on most wires
- variable cluster of peaks near 210 Hz wire resonance
- other peaks varied with the wire
- No dominant peaks

 $\begin{array}{ll} \mbox{Preliminary Physics Asymmetry} & {\cal A}^{phys}_{prelim} = (10\pm10)\times10^{-9} \\ \mbox{Instrumental Asymmetry} & {\cal A}^{inst} = (-0.2\pm1.18)\times10^{-9} \\ \mbox{Beam Off Null Asymmetry} & {\cal A}^{null} = ( 0.3\pm1.97)\times10^{-9} \end{array}$ 

- The instrumental and null asymmetries are small and consistent with zero.
- The systematic uncertainty in the experimental result is small compared to the statistical uncertainty.
- The goal accuracy of the experiment has been reached.

<sup>&</sup>lt;sup>0</sup>This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Number DE-SC0014622.

## n3He Collaboration

#### Duke University, Triangle Universities Nuclear Laboratory

Pil-Neo Seo

#### Istituto Nazionale di Fisica Nucleare, Sezione di Pisa

• Michele Viviani

#### **Oak Ridge National Laboratory**

- David Bowman
- Vince Cianciolo
- Paul Mueller
- Seppo Penttilä
- Jack Thomison

#### University of Kentucky

- Chris Crawford
- Latiful Kabir
- Aaron Sprow

#### Western Kentucky University

Ivan Novikov

#### University of Manitoba

- Michael Gericke
- Mark McCrea
- Carlos Olguin

# Universidad Nacional Autónoma de México

- Libertad Baron
- Jose Favela

#### University of New Hampshire

John Calarco

#### University of South Carolina

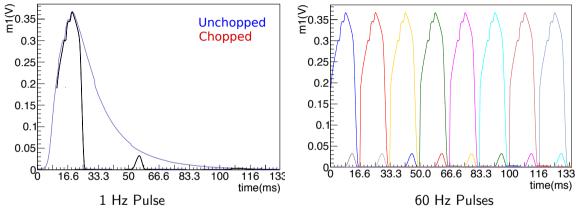
- Vladimir Gudkov
- Matthias Schindler

Young-Ho Song

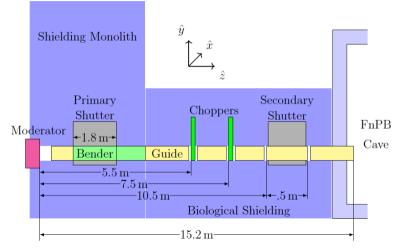
#### University of Tennessee

- Nadia Fomin
- Geoff Greene
- Serpil Kucuker
- Chris Hayes
- Chris Coppola
- Irakli Garishvili
- Eric Plemons

# University of Tennessee at Chattanooga

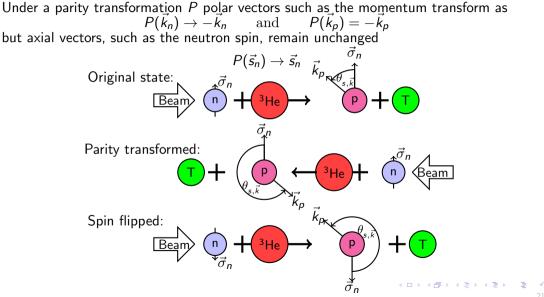

- Josh Hamblen
- Caleb Wickersham

#### University of Virginia

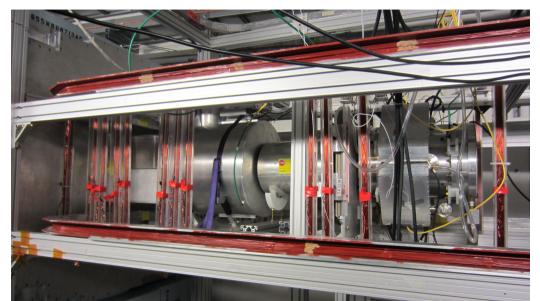

• S. Baessler

## Additional Slides

## Spallation Neutron Source Neutron Pulses

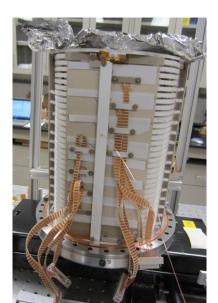



- located at the Oak Rdge National Laboratory (ORNL) in Tennessee
- 60 hertz pulsed spallation source
- n3He will located at the FnPB
- 20k liquid hydrogen moderator for cold neutron beam lines

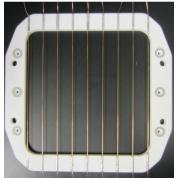



- n3He ran at the SNS FnPB at the Oak Ridge National Laboratory in Tennessee
- 60 Hertz pulsed spallation source
- 20K liquid hydrogen moderator for cold neutron beam lines

## A Brief Look at Parity




## n3He In FnPB




୬ **୯** ୯ 22 / 24

### Target Chamber Assembled Frame Stack



- 17 HV frames
- 16 signal frames
- 9 signal wires per frame
- 144 signals to read out
- 0.02" diameter wires



## Signal Wire Numbering

| Beam |    |            |            |    |    |    |    |    |    |     |     |     |     |     |     |     |
|------|----|------------|------------|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|
| i    | 8  | 17         | 26         | 35 | 44 | 53 | 62 | 71 | 80 | 89  | 98  | 107 | 116 | 125 | 134 | 143 |
| h    | 7  | 16         | 25         | 34 | 43 | 52 | 61 | 70 | 79 | 88  | 97  | 106 | 115 | 124 | 133 | 142 |
| g    | 6  | 15         | 24         | 33 | 42 | 51 | 60 | 69 | 78 | 87  | 96  | 105 | 114 | 123 | 132 | 141 |
| f    |    |            |            | 32 | 41 | 50 | 59 | 68 | 77 | 86  | 95  | 104 | 113 | 122 | 131 | 140 |
| e    | 4  | 13         | 22         | 31 | 40 | 49 | 58 | 67 | 76 | 85  | 94  | 103 | 112 | 121 | 130 | 139 |
| d    | 3  | 12         | 21         | 30 | 39 | 48 | 57 | 66 | 75 | 84  | 93  | 102 | 111 | 120 | 129 | 138 |
| с    | 2  | 11         | 20         | 29 | 38 | 47 | 56 | 65 | 74 | 83  | 92  | 101 | 110 | 119 | 128 | 137 |
| b    | 1  | 10         | 19         | 28 | 37 | 46 | 55 | 64 | 73 | 82  | 91  | 100 | 109 | 118 | 127 | 136 |
| а    | 0  | 9          | 18         | 27 | 36 | 45 | 54 | 63 | 72 | 81  | 90  | 99  | 108 | 117 | 126 | 135 |
|      | S1 | <b>S</b> 2 | <b>S</b> 3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | S16 |

17 HV Frames with 8 wires each • Signal 16 signal Frames with 9 wires each