The spin flipper doesn't cause the horns. What does?

David Bowman n-³He meeting 3/7/16

The apparatus

The horns were first found as a symmetric pattern in $\Delta Log[Yield]$ when the spin is flipped. The pattern was largest for the highest and lowest cells and the size increased with z.

National Laboratory

I investigated whether or not the forces acting on the neutron could produce horns. There are many cases to consider: static B-fields, their gradients, and the spin flipper RF fields. 12 adjustable parameters need to be studied.

First method:

Work out each case analytically (following Rabi) and estimate Δy for spin flipper on and off. I worked out a few cases, but there are too many equations to solve without making mistakes.

Second method: I laboriously coded up the equations of motion and integrated them numerically. I could then easily investigate different cases.

9 equations of motion $\frac{dx_k}{dt} = v_k$ $m\frac{dv_1}{dt} = \mu \left(\sum_{k=1}^3 u_k \frac{dB_k}{dx_1}\right)$ $m\frac{dv_2}{dt} = \mu \left(\sum_{k=1}^3 u_k \frac{dB_k}{dx_2}\right) - mg$ $m\frac{dv_3}{dt} = \mu \left(\sum_{k=1}^3 u_k \frac{dB_k}{dx_2}\right)$ $\frac{du_k}{dt} = -\gamma \left(\vec{u} \times \vec{B} \right)_k$

 $\vec{x}, \vec{v}, \vec{u}$

12 adjustable parameters

y and z velocities

x and y magnetic moment components

National Laboratory

Results:

False PV(10 ⁻⁸)	Horn(10 ⁻⁸)
7.2 10 ⁻⁶	
7.2 10-6	
6.8 10 ⁻⁶	
6.5 10 ⁻⁵	-8.6 10 ⁻⁵
.31	
6.9 10 ⁻⁶	-3.4 10 ⁻⁶
8.2 10-6	-8.7 10-6
7.2 10 ⁻⁶	
8.0 10-6	
7.6 10 ⁻⁶	
7.5 10 ⁻⁶	
7.2 10 ⁻⁶	
	False PV(10 ⁻⁸) 7.2 10 ⁻⁶ 7.2 10 ⁻⁶ 6.8 10 ⁻⁶ 6.5 10 ⁻⁵ .31 6.9 10 ⁻⁶ 8.2 10 ⁻⁶ 7.2 10 ⁻⁶ 8.0 10 ⁻⁶ 7.5 10 ⁻⁶ 7.2 10 ⁻⁶

Conclusion: The spin-dependent forces are too weak to produce the observed horns, but do produce a false PV signal of ~ 3 10⁻⁹ COAK RIDG

So what makes the horns?

- Turning the spin flipper on and off doesn't make the horns.
 Therefore, sorting data on spin up or down won't yield information on the horns.
- Chris Crawford has conjectured that the horns are created by a combination of:
 - Wrap-around neutrons that have a larger transverse phase space than direct neutrons
 - Intensity fluctuations that don't cancel out in the horn algorithm $(Y_{up}-Y_{down})/(Y_{up}+Y_{down})$

Yield vs. y in z plane #2 The pattern of Yield vs. y is created by the collimator and can produce "horns" when combined with a background

Hints concerning the origin of the "horns"

- The horns are not caused by the spin flipper state.
- The size of the horns increases with z, the detector plane #
- The horns have the same shape as 1/Yield[z]

I find the idea that the horns are caused by background attractive

- If background is caused by a long range radiation, then it explains why the horns increase with z. There is a larger background/signal as z increases
- The averaging time would be determined by the lifetime of the parent species.

Ideas concerning the origin of the "horns"

- If the "horns" don't depend on spin flipper state, then we won't be able top understand them by sorting on SF state.
- Dropped pulses
- Intensity fluctuations
- Wrap-around neutrons
- Background in the detector
- The horns may be caused by statistical fluctuations. If so, then what is fluctuating
 - Background (radiation history). Remember the 200 sec AI beta decay background in NPDGamma.
 - Dropped pulse history
 - Beam intensity (pulse to pulse or long term?)

A suggestion:

- Improve our "horn" diagnostics
- Fit data for each each plane and each pulse to
 - A + B G(y) + C H(y)
 - A is the y independent part ~ intensity
 - B is PV signal: β = B/A independent of intensity.
 - C is reduced horn signal: γ = C/A is independent of intensity.
- Correlate β and γ with candidate causes of horns
- Is γ random?
- If so, what is the time scale of fluctuations in γ ?

Comments concerning averaging

- Assume that we find that Ave(γ) has some time correlation time, τ . If $\tau = 0$ (completely random) then we have large RMS γ .
 - 4 10⁴ runs with 2.5 10⁴ t₀'s each. 10⁹ t₀'s.
 - If τ = 0, and γ fluctuates randomly, then the RMS size of for a single t₀ must be 10⁻⁷ (10⁹)^{1/2} ~ 3 10⁻³ that would be visible in a few t₀'s.
- We need to characterize the statistical properties of γ.
 - We expect γ to be independent of pulse intensity
 - Does it depend on radiation history?
 - What is the correlation time?
 - Does it depend on dropped pulse history?

