n-³He Analysis Outcome

Asymmetry Extraction From n-³He Data: Part 2

Latiful Kabir

University of Kentucky

< 回 > < 回 > < 回 >

Outline

- Analysis Algorithm
- IR Asymmetry
- UD Asymmetry
- Results

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Data Analysis Algorithm

1. Divide the entire data set into several (contiguous) batches based on beam power stability.

2. Within each batch, separate the runs as A and B groups based on RFSF state on dropped pulses.

3. Within each group, calculate raw asymmetry by considering two consecutive pulses. The yield is background subtracted and normalized by sum over all the detector signals.

4. Cut: Skip dropped pulse and pulses around it. Consider only 600 sequences with no dropped pulse within the sequence.

5. Fill in the histogram per wire for raw asymmetry over all the runs within each group. Get the mean of raw asymmetry from the histogram.

6. Within each batch combine A and B result using simple averaging. Divide by the geometry factor to get physics asymmetry for each wire.

7. Within each batch, considering either A or B group runs(\leftarrow), calculate correlations and apply that to get correlation corrected physics asymmetry and its uncertainty for group A and B dataset.

 \rightarrow Using covariance of A and B, construct covariance for $\frac{1}{2}(A+B)$

8. Combine physics asymmetry from all the batches to get global physics asymmetry for the entire data set.

イロン イロン イヨン イヨン 三日

Combining Group $\mathcal A$ & $\mathcal B$ data

$$\bar{A}_{\mathcal{A}+\mathcal{B}} = \frac{\bar{A}_{\mathcal{A}} + \bar{A}_{\mathcal{B}}}{2}$$
$$\Delta \bar{A}_{\mathcal{A}+\mathcal{B}} = \frac{\sqrt{\left(\Delta \bar{A}_{\mathcal{A}}\right)^{2} + \left(\Delta \bar{A}_{\mathcal{B}}\right)^{2}}}{2}$$
$$Cov(\bar{A}_{\mathcal{A}+\mathcal{B}}) = \frac{1}{4} \left[\frac{1}{N_{\mathcal{A}}}Cov(A_{\mathcal{A}}) + \frac{1}{N_{\mathcal{B}}}Cov(A_{\mathcal{B}})\right]$$

Latiful Kabir

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Correction for correlation : 1.Direct Inversion of Covariance Matrix

$$w_{i} = \frac{1}{(\delta A_{i})^{2}} = \frac{1}{\sigma_{i}^{2}} \longrightarrow w_{i} = \sum_{j} Cov(A_{p})_{ij}^{-1}$$
$$A_{p} = \frac{\sum_{i} w_{i}A_{i}^{p}}{\sum_{i} w_{i}} \longrightarrow A_{p} = \frac{\sum_{ij} Cov(A_{p})_{ij}^{-1}A_{i}^{p}}{\sum_{ij} Cov(A_{p})_{ij}^{-1}}$$
$$= \sum \frac{(A_{i}^{p} - A_{p}^{tot})^{2}}{\sigma_{i}^{2}} \longrightarrow \chi^{2} = \sum (A_{i}^{p} - A_{p}^{tot})Cov(A_{p})_{ij}^{-1}(A_{j}^{p} - A_{p}^{tot})$$

$$\chi^{2} = \sum_{i} \frac{(A_{i}^{p} - A_{p}^{tot})^{2}}{\sigma_{i}^{2}} \longrightarrow \chi^{2} = \sum_{ij} (A_{i}^{p} - A_{p}^{tot}) Cov(A_{p})_{ij}^{-1} (A_{j}^{p} - A_{p}^{tot})$$

ъ

< 日 > < 同 > < 回 > < 回 > < □ > <

Correction for correlation : 2. Diagonalizing Covariance Matrix

In matrix representation,

 $\bar{A} = bX$

Where, X is a column matrix filled with all 1 and b is the fit parameter (physics asymmetry).

$$b = (X^T W X)^{-1} X^T W \bar{A}$$
$$(\Delta b)^2 = (X^T W X)^{-1}$$
$$\chi^2 = (\bar{A} - X b)^T W (\bar{A} - X b)$$

Where, Weight $W = Cov(A_p)^{-1}$ i.e. inverse of covariance matrix. Now, let's rotate to a basis where they are uncorrelated,

$$S^T C S = D$$

Where D is a diagonal matrix with diagonal elements

$$D = \text{diag}(\sigma_1^2, \sigma_2^2, \sigma_3^2, \sigma_4^2, ..., \sigma_{144}^2)$$

Correction for correlation : 2. Diagonalizing Covariance Matrix

In the rotated frame,

 $\bar{A}' = bX' \longrightarrow \text{is our fit in rotated frame}$ $b = (X'^T W' X')^{-1} X'^T W' \bar{A}'$ $(\Delta b)^2 = (X'^T W' X')^{-1}$ $\chi^2 = (\bar{A}' - bX')^T W' (\bar{A}' - bX')$

Where,

$$A' = S^T \overline{A}$$

 $X' = S^T X$
 $W' = D^{-1}$

Do The Fit With Graphical Representation : If we plot $\overline{A}'X'^{-1}$ vs index i (mode#) \longrightarrow we get linear fit (flat line) If we plot \overline{A}' vs index i (mode#) \longrightarrow we get a fit which is not flat

Why make A and B separation?

Figure: Raw asymmetry for entire LR data set : Group A vs Group B

Why make A and B separation?

Figure: Raw asymmetry for entire LR data set : Group A + Group B

• • • • • • • • • • • •

LR Asymmetry: Data Summary

- Run ranges : 14785 15860 and 57403 57796
- Number of runs analyzed : 718 + 329
- Batches :
- Batch-1: 14785 14880
- Batch-2: 14881 15235
- Batch-3: 15236 15520
- Batch-4: 15521 15785
- Batch-5: 15786 15860
- Batch-6: 57403 57600
- Batch-7: 57601 57796

э

く 同 ト く ヨ ト く ヨ ト -

Beam power distribution for LR data

Note : Dropped pulses have been excluded while calculating beam power.

Latiful Kabir

LR Physics Asymmetry from Batch 2A

LR Physics Asymmetry from Batch 2B

LR Physics Asymmetry from Batch 2A+2B (Uncorrected)

LR Asymmetry

LR Physics Asymmetry from Batch 2A+2B (Corrected)

Figure: Fit with covariance for LR batch-2 data

Latiful Kabir

LR asymmetry from different batches

Batch#	Physics Asymmetry		Physics Asymmetry		Physics Asymmetry	
			$\mathcal{A} + \mathcal{B}$		(Correlation Corrected)	
	Group: A	Group : B	$A \pm \Delta A$	χ^2/ndf	$A \pm \Delta A$	χ^2/ndf
#1 (64)	-0.56 ± 1.78	$\textbf{-7.89} \pm \textbf{2.09}$	-4.23 ± 1.37	113.58/125	-3.81 ± 2.15	113.96/125
#2 (208)	-0.48 ± 1.1	-10.11 ± 1.03	$\textbf{-5.29}\pm0.76$	110.64/125	-5.35 ± 1.19	113.77/125
#3 (197)	0.91 ± 1.07	$\textbf{-10.60} \pm \textbf{1.12}$	$\textbf{-4.85}\pm0.78$	141.08/125	-5.09 ± 1.22	150.37/125
#4 (195)	3.93 ± 1.09	$\textbf{-8.63} \pm \textbf{1.12}$	-2.35 ± 0.78	132.35/125	-2.72 ± 1.22	130.19/125
#5 (57)	$\textbf{4.81} \pm \textbf{2.08}$	$\textbf{-9.92} \pm \textbf{2.27}$	-2.55 ± 1.54	131.04/125	$\textbf{-3.69} \pm \textbf{2.42}$	147.85/125
#6 (166)	-1.46 ± 1.30	$\textbf{-4.28} \pm \textbf{1.26}$	-2.87 ± 0.90	109.46/125	-3.44 ± 1.39	117.17/125
#7 (163)	-13.00 ± 1.10	4.61 ± 1.05	$\textbf{-4.20}\pm0.76$	115.51/125	-3.97 ± 1.17	106.85/125

Note : Asymmetries and their errors are presented in 10^{-7} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Data Reduction

17/39

э

Fit Along Batches

Figure: Average LR physics asymmetry over all batches

э

A (10) A (10) A (10)

Distribution of chi square

Figure: Chi squares from the LR batches

Latiful Kabir

æ

Fit Along Wires

Figure: Physics asymmetry for each wire after fit

э

< 回 > < 回 > < 回 >

Fit Along Wires

Figure: LR physics asymmetry (corrected) using fit for each wire

< ∃⇒

Fit Along Wires

Note : Log likelihood fit method is used for the fit

Latiful Kabir

문어 문

Run summary: Run ranges : 18000 - 57000 Batch -1: 18000 - 22000 Batch -2 : 22001 - 26500 Batch -3: 26501 - 29100 Batch -4: 29101 - 30050 Batch -5: 30051 - 31250 Batch -6: 31251 - 31930 Batch -7: 31931 - 33800 Batch -8: 33801 - 35100 Batch -9: 35101 - 35660 Batch -10 : 35661 - 36380 Batch -11 : 36381 - 38100

э

A (10) A (10)

Run summary: Batch -12 : 38101 - 40000 Batch -13: 40001 - 43700 Batch -14: 43701 - 45200 Batch -15: 45201 - 47200 Batch -16: 47201 - 49200 Batch -17: 49201 - 51200 Batch -18 : 51201 - 53800 Batch -19 : 53801 - 54800 Batch -20 : 54801 - 56340 Batch -21: 56341 - 57000

э

A (10) A (10)

Beam power distribution for UD dataset

Note : Dropped pulses have been excluded while calculating beam power.

< 6 k

UD physics asymmetry for batch 2 (Uncorrected)

Figure: UD physics asymmetry (uncorrected) for batch 2 after combining group A and B

▲ 同 ▶ → 三 ▶

UD physics asymmetry for batch 2 (Corrected)

Figure: UD physics asymmetry (corrected) for batch 2

- E - N

Batch#	Physics Asymmetry		Physics Asymmetry		Physics Asymmetry	
			A + B		(Correlation Corrected)	
	Group:A	Group : B	$A \pm \Delta A$	χ^2/ndf	$A \pm \Delta A$	χ^2/ndf
#1 (3242)	-13.16 ± 2.75	$\textbf{6.25} \pm \textbf{2.73}$	$\textbf{-3.45} \pm \textbf{1.94}$	142.25/125	-4.61 ± 3.04	142.07/125
#2 (3679)	-6.57 ± 2.60	11.61 ± 2.58	$\textbf{2.52} \pm \textbf{1.83}$	125.56/125	$\textbf{3.20} \pm \textbf{2.85}$	134.22/125
#3 (1954)	$\textbf{-1.69} \pm \textbf{3.09}$	$\textbf{-7.09} \pm \textbf{3.09}$	$\textbf{-4.39} \pm \textbf{2.18}$	146.96/125	$\textbf{-5.13} \pm \textbf{3.40}$	136.34/125
#4 (782)	8.11 ± 5.08	1.77 ± 5.20	4.95 ± 3.64	142.68/125	5.81 ± 5.69	133.15/125
#5 (729)	14.64 ± 5.07	$\textbf{-4.66} \pm \textbf{5.13}$	$\textbf{4.99} \pm \textbf{3.61}$	146.91/125	2.91 ± 5.62	158.73/125
#6 (397)	15.53 ± 6.33	$\textbf{-18.76} \pm \textbf{6.77}$	$\textbf{-1.62} \pm \textbf{4.63}$	105.16/125	-2.82 ± 7.17	110.00/125
#7 (1483)	14.58 ± 3.66	$\textbf{-13.72} \pm \textbf{3.69}$	0.43 ± 2.60	142.05/125	$\textbf{-0.96} \pm \textbf{4.06}$	145.58/125
#8 (1072)	9.78 ± 4.30	$\textbf{-8.57} \pm \textbf{4.18}$	0.60 ± 3.00	152.35/125	1.36 ± 4.68	125.17/125
#9 (467)	-16.97 ± 6.61	14.69 ± 6.71	-1.13 ± 4.71	134.70/125	0.73 ± 7.37	142.04/125
#10 (609)	-10.24 ± 5.37	7.54 ± 5.74	-1.35 ± 3.93	153.14/125	0.25 ± 6.13	154.30/125
#11 (1270)	10.17 ± 3.97	$\textbf{-2.06} \pm \textbf{4.12}$	4.06 ± 2.86	201.82/125	3.37 ± 4.48	182.78/125
#12 (503)	-12.46 ± 6.18	$\textbf{-9.33} \pm 5.66$	$\textbf{-10.90} \pm \textbf{4.19}$	158.10/125	$\textbf{-8.32}\pm\textbf{6.50}$	152.74/125
#13 (2464)	1.15 ± 2.82	$\textbf{2.56} \pm \textbf{2.77}$	1.85 ± 1.98	171.64/125	2.02 ± 3.07	148.87/125
#14 (1045)	0.26 ± 4.68	$\textbf{-5.80} \pm \textbf{4.56}$	$\textbf{-2.77} \pm \textbf{3.26}$	103.27/125	$\textbf{-1.23}\pm5.08$	102.23/125
#15 (1553)	$\textbf{-0.06} \pm \textbf{3.33}$	9.80 ± 3.46	$\textbf{4.87} \pm \textbf{2.40}$	188.27/125	5.86 ± 3.73	185.47/125
#16 (1498)	11.96 ± 4.16	$\textbf{3.32} \pm \textbf{4.42}$	7.64 ± 3.04	106.6/125	5.78 ± 4.77	110.42/125
#17 (1559)	4.57 ± 4.14	6.39 ± 4.00	$\textbf{5.48} \pm \textbf{2.88}$	133.80/125	8.20 ± 4.52	148.30/125
#18 (2280)	$\textbf{-4.37} \pm \textbf{3.81}$	$\textbf{-4.46} \pm \textbf{3.70}$	-4.41 ± 2.65	161.43/125	-4.31 ± 4.11	163.19/125
#19 (891)	-34.02 ± 6.01	44.32 ± 6.05	5.15 ± 4.26	146.76/125	4.58 ± 6.59	128.37/125
#20 (1111)	18.33 ± 3.78	$\textbf{-23.47} \pm \textbf{4.06}$	$\textbf{-2.57} \pm \textbf{2.77}$	131.20/125	-0.42 ± 4.31	144.69/125
#21 (614)	14.52 ± 5.33	5.21 ± 4.85	9.86 ± 3.60	161.43/125	9.87 ± 5.60	114.66/125

Note : Asymmetries and their errors are presented in 10⁻⁸ in this table.

Latiful Kabir

n-³He Analysis Outcome

2

Distribution for chi square

Figure: Distribution of chi square from all UD batches

Latiful Kabir

э

< 回 > < 回 > < 回 >

UD physics asymmetry from all the batches

UD fit along wires

31/39

UD physics asymmetry (corrected)

Figure: UD physics asymmetry (corrected) using fit values for all the wires

< A >

Distribution of chi square

Note : Log likelihood fit method is used for the fit.

Latiful Kabir

► < A</p>

문어 문

Results

PC

$$A_{LR} = (-4.12 \pm 0.52) \times 10^{-7}$$

 PV
 $A_{UD} = (0.9528 \pm 0.9527) \times 10^{-8}$

Latiful Kabir

2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

Backup Slides

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Backup Slides

Beam power distribution for UD dataset

Note : Beam power calculation includes all pulses (including dropped).

Latiful Kabir

n-³He Analysis Outcome

Correlation between wires: LR batch 2A correlation for physics asymmetry

The transformation matrix S

Figure: The transformation matrix S for UD batch-2 data

э

The eigen values

Figure: The eigen values from UD batch-2 data

ъ