Geometry Factors pt. II, Error Analysis, and Optimizations

Christopher Coppola

November 11, 2014

Simulation Method

Error Analysis

Optimizations

Simulation Goals

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- -Calculate geometry factors
- -Optimize pressure and collimation variables
- -Estimate running time

Completed Improvements

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- -Using mersenne twistor generator
- -Updated beam divergence model
- -Change structure to weighted variables
- -Addition of covariant errors
- -Many small speedups
- -Statisics anomaly resolved

Statistics-dependent effect

For simplicity, consider the diagonal approximation to the uncertainty:

$$\frac{1}{\sigma_d^2} \approx \sum_{\kappa} \frac{1}{\sigma_{\kappa}^2}$$
$$\sigma_d = \frac{1}{\sqrt{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} + \frac{1}{\sigma_3^2} + \dots}} = \frac{1}{\sqrt{\frac{G_1^2}{c_1} + \frac{G_2^2}{c_2} + \frac{G_3^2}{c_3} + \dots}}$$

The factors c_i consist of terms which converge very rapidly. The G_{κ} fluctuate randomly in (-1,1) as sample size is increased. As the sample size gets large, they approach their true value. Since they appear squared in all terms, factors which are slightly too large will have a significant effect on the value of σ_d . For statistically insufficient sample sizes, σ_d is underestimated. With a large enough sample size, the value stabilizes.

Cell Diagram

	Chamber Geometry; Cross-Section View															
9														. •		
8	•	•	•	-	-		•	-	•	•	•	•		•	•	
7		•										+			+	1
96 ^m	•	•				•				•				•	•	
9 cells x 1.9cm	÷	•	•		- ÷	1	•	- ÷	•	1	•			•	•	
¹⁹⁰ 6	+	•													•	1
3		•							•				•	•	•	
2					1				•	1			•		•	
1									•				•	•	•	
	1	2	3	4	5	6	7	8 6 cells	9	10	11	12	13	14	15	16
							16	cells	x 1.90	m						

Chamber Geometry; Cross-Section View

View in the yz-plane of the wire chamber.

Cell Model

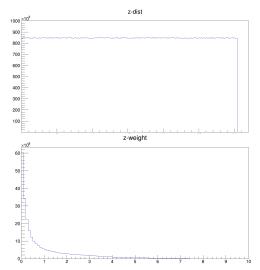
1. Model the wire chamber as 144 cells which collect all charge deposited in a parallelepiped set by the surrounding high voltage wires.

2. Each cell is $1.9 \text{ cm} \times 1.9 \text{ cm} \times 17.1 \text{ cm}$. (There is a small correction to the volume of the top and bottom row of cells, since they are smaller).

3. Assume the ^{3}He is contained inside the total cell volume. This is the ^{3}He "buffer."

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

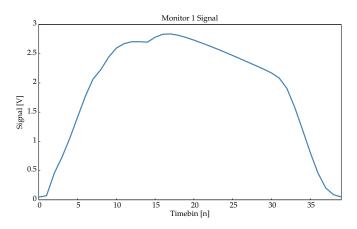
Weighting Scheme



Instead of using kinematic variables, use normally distributed variables in x,y,z, and t, with corresponding weights.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

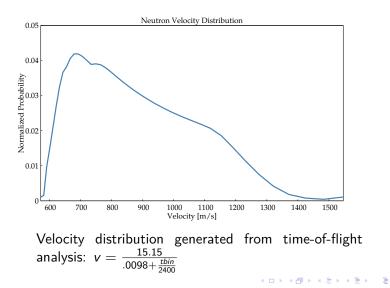
Time Signal



40-timebin neutron intensity signal from Monitor 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Neutron Velocity Distribution



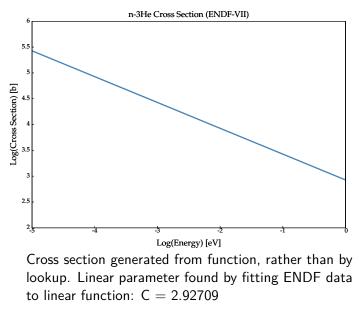
JOC.

Beam Profile



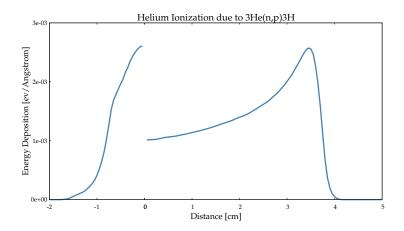
New fitting function for beam profiles based on gaussian dispersion model: $I = \frac{l_0}{2} \left[Erf\left(\frac{\mu-x}{\sigma\sqrt{2}}\right) + Erf\left(\frac{\mu+x}{\sigma\sqrt{2}}\right) \right]$

Cross Section



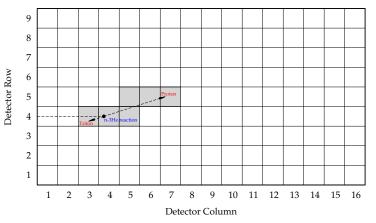
◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Ion Energy Deposition

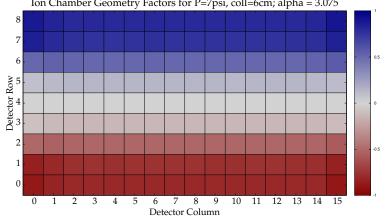


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

Tracking Matrix



Geometry Factors



Ion Chamber Geometry Factors for P=7psi, coll=6cm; alpha = 3.075

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Quantities

To calculate geometry factors and our dilution factor, we will need to track the mean energy deposited into a cell, the mean energy weighted by the cosine, and the mean covariant energy between two different cells.

 $egin{aligned} & \langle E^\kappa
angle \ & \langle E^\kappa \cos heta
angle \ & \langle Q^{\kappa\beta}
angle \end{aligned}$

Calculation of α_{κ}

The element asymmetry α_{κ} depends on G_{κ} and the measured yields of that element.

$$Y_h^{\kappa} = \langle E^{\kappa} (1 + h\alpha \cos \theta) \rangle$$

$$\frac{Y_{+}^{\kappa} - Y_{-}^{\kappa}}{Y_{+}^{\kappa} + Y_{-}^{\kappa}} = \alpha_{\kappa} \frac{\langle E^{\kappa} \cos \theta \rangle}{\langle E^{\kappa} \rangle} \Rightarrow G_{\kappa} = \frac{\langle E^{\kappa} \cos \theta \rangle}{\langle E^{\kappa} \rangle}$$

$$\alpha_{\kappa} = \frac{1}{G_{\kappa}} \frac{Y_{+}^{\kappa} - Y_{-}^{\kappa}}{Y_{+}^{\kappa} + Y_{-}^{\kappa}}$$

(ロ)、(型)、(E)、(E)、 E) の(()

Calculation of α

We will combine each element asymmetry to form the combined physics asymmetry.

$$\alpha = \sum_{\kappa} \mathbf{w}_{\kappa} \alpha_{\kappa} = \vec{\mathbf{w}} \cdot \vec{\alpha}$$

$$\sum_{\kappa} w_{\kappa} = 1$$

Choose weighting that minimizes uncertainty.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Error in α

$$\sigma_{\alpha}^{2} = \sum_{i} \sum_{j} \frac{\partial \alpha}{\partial \alpha_{i}} \frac{\partial \alpha}{\partial \alpha_{j}} \sigma_{\alpha_{i}\alpha_{j}} = \sum_{i} \sum_{j} w_{i} w_{j} \sigma_{\alpha_{i}\alpha_{j}} = \vec{w}^{\mathsf{T}} \cdot \hat{\sigma}_{ij} \cdot \vec{w}$$

Must have method to calculate $\hat{\sigma}_{ij}$ from fundamental quantities:

$$\sigma_{\alpha_{\kappa}\alpha_{\beta}} = \frac{\langle Q^{\kappa\beta} \rangle}{2 \langle E^{\kappa} \cos \theta \rangle \langle E^{\beta} \cos \theta \rangle}$$

For diagonal elements, this reduces to:

$$\sigma_{\alpha_{\kappa}}^{2} = \frac{\langle E^{\kappa^{2}} \rangle}{2 \langle E^{\kappa} \cos \theta \rangle^{2}}$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

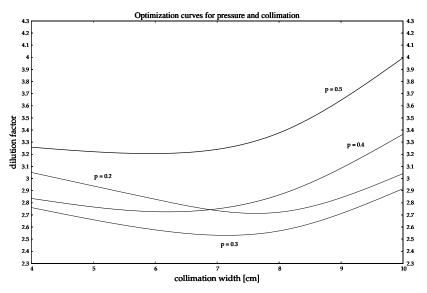
Optimization

$$\frac{\partial \sigma_{\alpha_{\kappa}}^2}{\partial w_k} = \lambda_k \frac{\partial (\sum_i w_i - 1)}{\partial w_k}$$

$$\Rightarrow$$
 minimized $\sigma_{lpha_{\kappa}}^2 = \sum_i \sum_j \hat{\sigma}_{ij}^{-1}$

Apply to pressure and collimation parameters.

Results



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Planned Improvements

-New beam scan will improve precision of x-y positioning. -Drift time analysis will give more realistic signal timing.

ふして 山田 ふぼやえばや 山下