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1 Simulation Summary

The current calculation is a complete monte carlo simulation of the detector signals from the
neutron beam to the output wires. A previous version of this simulation was explained in
March and that presentation is available on the n3He wiki. Significant improvements have
been made since then, and a detailed presentation of the current status will be presented
with the results. Briefly, the simulation involves these steps:

-Beam monitor data is fitted and used to generate the neutron velocity distribution.
-Neutron beam scans are fitted and used to generate the coordinates of the neutron events.
-ENDF cross section data is fitted and used to determine reaction depths.
-Reaction product energy depositions are calculated using SRIM.
-Reaction product times and cells are tracked for 5760 signal elements.
-Statistics are calculated using the following method:

2 Element Asymmetry

Every neutron event i generates a unique angle θi, which is the angle between the proton
and neutron momenta. The simulation calculates quantities for K elements, indexed by κ.
For each neutron event, the energies deposited into each element, Qκ

i , are recorded. The
total energy received by an element is the sum of all the energies deposited in each event:

Eκ =
Nmc∑
i=1

Qκ
i (1)

Let us define the expectation value for the energy in cell κ as 〈Eκ〉:

〈Eκ〉 = 〈
Nmc∑
i=1

Qκ
i 〉

We will analyze how to evaluate this summation further in section 3. For now, let us
define our observable quantities. This expectation value corresponds to our observable, since
for a large number of trials, the average simulated value represents the observed energy in
an element. For a given helicity h, the experimentally observed yield for cell κ, Y κ

h , is

Y κ
h = 〈Eκ(1 + hα cos θ)〉, (2)

where α is the size of the underlying physics asymmetry. From this, we can find a relation
between our observable quantities and the simulated ones:

Y κ
+ − Y κ

−

Y κ
+ + Y κ

−
= ακ

〈Eκ cos θ〉
〈Eκ〉

Define the geometry factor for element κ as:

Gκ =
〈Eκ cos θ〉
〈Eκ〉

=

∑Nmc
i=1 Qκ

i cos θi∑Nmc
i=1 Qκ

i

(3)

2



Then the element κ produces an experimental value of the physics asymmetry:

ακ =
1

Gκ

Y κ
+ − Y κ

−

Y κ
+ + Y κ

−
(4)

3 Statistics

There are 144 physical cells, and 40 time slices, for a total of 5760 signal elements. The prob-
ability that a single neutron event will deposit energy into an element is much smaller than
one, even for elements at the front of the chamber. Because of this, the binomial distribution
of the number of deposition events nκ can be approximated with Poisson statistics. Since the
probability of any individual element receiving energy from a given neutron event is much
less than one, and each pulse will contain 108 neutrons, we can assume that our summation∑Nmc

n '
∑∞

n . We can introduce the counting statistics by taking advantage of this property.

Now we return to evaluating (1). The expectation value of the observed energy Eκ is
defined as the average value obtained from repeated trials. Let us take advantage of the
Poisson nature of the underlying quantities to simplify this procedure. The expectation
value of the element signal can be expressed in terms of the average number of depositions
in an element and the expectation value of the deposition energy in element κ.

Eκ =
Nmc∑
n

e−λκλnκ
n!

n∑
i=1

Qκ
i (5)

The index n is a Poisson-distributed random variable of the number of depositions oc-
curing in element κ, and Qκ

i is a random variable with a corresponding distribution over the
range of possible energies deposited in element κ. Now, apply the expectation value to this
summation:

〈Eκ〉 = 〈
Nmc∑
n

e−λκλnκ
n!

n∑
i=1

Qκ
i 〉 =

Nmc∑
n

e−λκλnκ
n!
〈
n∑
i=1

Qκ
i 〉

The expectation operator applies to every term in the summation, so we can move it to
just the sum over i. Now, there will be a large number of neutron events in a simulation,
so we can assume that the average of the distribution of all possible deposition energies in
element κ will be the same as the average of the energies in a single simulation. This will
be used to approximate one pulse, so call it the pulse average. For clarity, denote the total
pulse average with a bar:

〈
n∑
i=1

Qκ
i 〉 = nQκ

By Poisson statistics, the quantity λκ is equal to the average number of deposition events
occuring in element κ. Use the same notation and call this the pulse average of n̄κ, where we
will assume again that the number of events in a simulation is large enough that this local
average converges to the expectation value. The sum over n gives the result

〈Eκ〉 = n̄κQκ (6)
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Here we have used the fact that

∞∑
n

e−λκλnκ
n!

n = n̄κ

We have now expressed the expectation value of the observable energy in terms of two
averages which we can measure from a single simulation. This result is intuitively obvious,
but we will apply the same method to calculate some others which are not in section 4.

To calculate the statistics of the running time, as well as optimizing experimental param-
eters, we can calculate the uncertainty in the physics asymmetry. To do this, consider the
covariance of the asymmetries of two elements (as defined in (4)):

σ(ακ, αβ) = σακαβ =
±1∑
h1

±1∑
h2

∂ακ
∂Y κ

h1

∂αβ

∂Y β
h2

σY κh1
Y βh2

(7)

The indices h1 and h2 refer to the difference helicity states of the neutron beam. Events
that occur in different helicity states will not be correlated, so the signal covariances are zero
unless h1 = h2. We can rewrite the covariance in the uncertainty as:

σακαβ =
∂σκ
∂Y κ

+

∂σβ

∂Y β
+

σY κ+Y
β
+

+
∂σκ
∂Y κ
−

∂σβ

∂Y β
−
σY κ−Y

β
−

In addition, since the signal yields for different helicity states are almost identical, the
energy variances for the different helicity states are equal: σY κ+Y

β
+

= σY κ−Y
β
−

= σY κY β . We can

further simplify the expression for the asymmetry covariance in the following way:

σακαβ =

[
∂σκ
∂Y κ

+

∂σβ

∂Y β
+

+
∂σκ
∂Y κ
−

∂σβ

∂Y β
−

]
σY κY β

Carrying out the partial derivatives and simplifying, we get:

σακαβ =
1

GκGβ

[
4(Y κ

+Y
β

+ + Y κ
−Y

β
− )

(Y κ
+ + Y κ

− )2(Y β
+ + Y β

− )2

]
σY κY β

Due to the high statistics in each pulse, we have Y κ
+ = Y κ

− = 〈Eκ〉 = n̄κQκ:

σακαβ =
1

2GκGβ

σY κY β

n̄κQκn̄βQβ
(8)

Note that the two in the denominator comes from the fact that two pulses are necessary to
calculate ακ. To evaluate this, we need to define the quantity σY κY β , which is the covariance
of two signal energies:

σY κY β = 〈Y κY β〉 − 〈Y κ〉〈Y β〉 = 〈EκEβ〉 − 〈Eκ〉〈Eβ〉+ αh[...] + α2[...]

Each of the observable energies has a correction term on the order of α or α2 (3). For
this experiment, our asymmetry is on the order of 10−7. Any terms in the above expression
with one or more coefficients of α will be 107 times smaller than the rest, so we can safely
neglect them:
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σY κY β = 〈EκEβ〉 − 〈Eκ〉〈Eβ〉 (9)

The solution in (6) expresses the product on the right in terms of pulse averages. Now
we consider the term on the left:

〈EκEβ〉 =
〈 Nmc∑

n

e−λλn

n!

n∑
i

Qκ
i

n∑
j

Qβ
j

〉
(10)

In order to evaluate this, we must consider the different event subsets in the Poisson sum.
Specifically, we must treat the difference between events which deposit energy coincidentally
in both elements κ and β (leading to energy correlations) and those which deposit energy
only in one. Each of these subsets will have its own separate Poisson parameter. For example,
we can rewrite (6) using this decomposition:

〈Eκ〉 =
Nmc∑
n

e−λκλnκ
n!

〈 n∑
i

Qκ
i

〉
=

Nmc∑
n

e−λκβλnκβ
n!

Nmc∑
n

e−λκ́λnκ́
n!

〈 nκβ∑
i

Qκ
i +

nκ́∑
j

Qκ
j

〉

=
Nmc∑
n

e−λκβλnκβ
n!

〈
nκβ∑
i

Qκ
i 〉+

Nmc∑
n

e−λκ́λnκ́
n!

〈 nκ́∑
j

Qκ
j

〉
= ńκQ́κ + n̂κQ̂κ = n̄κQκ (11)

The acute denotes events which are unique to the element, and the caret denotes events
which are coincident with another cell (unspecified here). This shows that adding the two
subsets of depositions gives the total sum of depositions for all events, as expected. Evalu-
ating sums of this form implies the separation of the sum over events into distinct subsets:

n∑
i

Qκ
i =

nκβ∑
i

Qκ
i +

nκ́∑
j

Qκ
j +

nβ́∑
k

Qκ
k =

nκβ∑
i

Qκ
i +

nκ́∑
j

Qκ
j (12)

The third term will be zero, since depositions in element κ will not appear in any sum
over events unique to element β. So we see that for every term in the Poisson sum, the
number of depositions, n, will be distributed between coincident and unassociated events.
Now we can continue evaluating (10), using the decompositions from (11) and (12):

〈EκEβ〉 =
〈 Nmc∑

n

e−λκβλnκβ
n!

Nmc∑
n

e−λκ́λnκ́
n!

Nmc∑
n

e−λβ́λn
β́

n!

[ nκβ∑
i

Qκ
i +

nκ́∑
j

Qκ
j

][ nκβ∑
i

Qβ
i +

nβ́∑
j

Qβ
j

]〉
(13)

The first term will be the product of sums over coincident events. This is the sum all the
elements of a matrix which are of products of the individual depositions. We can separate
this into the sum of diagonal and off-diagonal events:

〈 nκβ∑
i

Qκ
i

nκβ∑
j

Qβ
j

〉
= nQ̂κQβ + (n2 − n)Q̂κQ̂β (14)

In the second term, we can express the average of the products as a product of the
averages because events which deposit energy into different elements with no overlap will
not be correlated. We can take the Poisson factors out of the expectation value, and now
calculate the deposition sums using our notation for the different averages:
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〈EκEβ〉 =
Nmc∑
n

e−λκβλnκβ
n!

[
nQ̂κQβ + (n2 − n)Q̂κQ̂β

]
+

Nmc∑
n

e−λκ́λnκ́
n!

nQ́κ

Nmc∑
n

e−λβ́λn
β́

n!
nQ́β

+
Nmc∑
n

e−λκβλnκβ
n!

nQ̂β

Nmc∑
n

e−λκ́λnκ́
n!

nQ́κ +
Nmc∑
n

e−λκβλnκβ
n!

nQ̂κ

Nmc∑
n

e−λβ́λn
β́

n!
nQ́β (15)

To evaluate (15), we need

Nmc∑
n

e−λκλnκn
2

n!
= n̄2

κ + n̄κ

Note that each element pair produces a unique λκβ = n̂κβ. Now we can calculate the
Poisson sums:

= n̂κβQ̂κQβ + n̂2
κβQ̂

κQ̂β + ńκQ́κńβQ́β + n̂κβQ̂βńκQ́κ + n̂κβQ̂κńβQ́β

= n̂κβQ̂κQβ +
(
n̂κβQ̂κ + ńκQ́κ

)(
n̂κβQ̂β + ńβQ́β

)
(16)

Recall from (11) that the sum over coincident and unique events for an element is equal
to the total sum:

〈EκEβ〉 = n̂κβQ̂κQβ + n̄κQκn̄βQβ (17)

Substitute this into (9) to get an expression for the signal covariance:

σY κY β = n̂κβQ̂κQβ + n̄κQκn̄βQβ − n̄κQκn̄βQβ = n̂κβQ̂κQβ (18)

Now we have an expression for the asymmetry covariance:

σακαβ =
n̂κβQ̂κQβ

2GκGβn̄κQκn̄βQβ
(19)

Finally, we invert the matrix of uncertainty covariances and sum the elements to calculate
the physics asymmetry:

1

σ2
α

=
K∑
κ

K∑
β

[σακαβ ]−1
κβ (20)

4 Diagonal Approximation

We can approximate the uncertainty in the asymmetry by summing only the inverse of
the diagonal terms of the uncertainty covariance matrix. This is equivalent to ignoring
covariances and only calculating element variances. This approximation is valid when l/a <
1, where l is the length that reaction products travel, and a is the dimension of the cells.

K∑
κ

K∑
β

[σακαβ ]−1
κβ ≈

K∑
κ

1

σ2
ακ

(21)
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Consider the variances for the asymmetry of each element

σ2
ακ =

〈Eκ2〉 − 〈Eκ〉2

2G2
κn̄

2
κQ

κ2 (22)

To evaluate this, we must calculate the expectation value of the diagonal elements of the
signal covariance matrix:

〈Eκ2〉 =
Nmc∑
n

e−λκλnκ
n!
〈
n∑
i=1

Qκ
i 〉2 =

Nmc∑
n

e−λκλnκ
n!

[
nQκ2 + (n2 − n)Qκ2

]
(23)

Now we can simplify the formula for the variance σ2
ακ :

σ2
ακ =

n̄κQκ2 + (n̄2
κ + n̄κ)Qκ2 − n̄κQκ2 − n̄2

κQ
κ2

2n̄2
κG

2
κQ

κ2 =
1

2n̄κ

Qκ2

G2
κQ

κ2 (24)

This solution corresponds to the simplification of (19) with repeated indices. This ap-
proximation can be used as a check on the covariant solution in the appropriate regime.

5 Additional Computed Quantities

Define the efficiency of element κ, εκ, as:

εκ =
1

Nmc

Nmc∑
i=1

δκi (25)

δκi =

{
0, if Qκ

i = 0
1, if Qκ

i 6= 0

}
The quantitity εκ should converge, so the expected number of deposition events in element

κ, nκexp, can be predicted by multiplying the element efficiency by the number of experimental
neutron events, Nexp:

nκexp = εκNexp (26)

Define the multiplicity of the chamber as:

ν =
1

Nmc

Nmc∑
i

K∑
κ

δκi =
K∑
κ

εκ (27)

The energy efficiency of the chamber is:

η =
1

Nmc Qn(3He,T )p

Nmc∑
i

K∑
κ

Qκ
i (28)
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