PV potential from chiral EFT

Expression of the PV potential

$$V_{PV} = \underbrace{V_{(OPE)}^{(OPE)}}_{\text{order } Q^{-1}} + \underbrace{V_{(TPE)}^{(TPE)} + V_{(CT)}^{(RC)} + V_{(CT)}^{(CT)}}_{\text{order } Q^{1}}$$

$$V_{PV}^{(OPE)} = \frac{g_{A}h_{\pi}^{1}}{2\sqrt{2} f_{\pi}} (\vec{\tau}_{1} \times \vec{\tau}_{2})_{z} \frac{i \mathbf{k} \cdot (\sigma_{1} + \sigma_{2})}{\omega_{k}^{2}}$$

$$V_{PV}^{(TPE)} = -\frac{g_{A}h_{\pi}^{1}}{2\sqrt{2} f_{\pi}(4\pi f_{\pi})^{2}} (\vec{\tau}_{1} \times \vec{\tau}_{2})_{z} i \mathbf{k} \cdot (\sigma_{1} + \sigma_{2}) L(k) + \cdots$$

$$V_{PV}^{(CT)} = \frac{1}{(4\pi)^{2} (f_{\pi})^{3}} \Big[C_{1}i(\sigma_{1} \times \sigma_{2}) \cdot \mathbf{k} C_{2}\vec{\tau}_{1} \cdot \vec{\tau}_{2}i(\sigma_{1} \times \sigma_{2}) \cdot \mathbf{k} + C_{3}(\vec{\tau}_{1} \times \vec{\tau}_{2})_{z}i(\sigma_{1} + \sigma_{2}) \cdot \mathbf{k} + C_{4}(\tau_{1z} + \tau_{2z})i(\sigma_{1} \times \sigma_{2}) \cdot \mathbf{k} + C_{5}(3\vec{\tau}_{1z}\tau_{2} - \vec{\tau}_{1} \cdot \vec{\tau}_{2})i(\sigma_{1} \times \sigma_{2}) \cdot \mathbf{k} \Big]$$

• $\mathbf{k} = \mathbf{p}'_1 - \mathbf{p} \left(\mathbf{p}_1 = \text{initial momentum of nucleon 1, etc.} \right); L(k) = \frac{1}{2} \frac{s}{k} \ln \left(\frac{s+k}{s-k} \right),$ $s = \sqrt{k^2 + 4 m_{\pi}^2}, \, \omega = \sqrt{k^2 + m_{\pi}^2}$

- TPE: same expression as Zhu et al. & Hyun et al.
- Six parameters (LEC's): $h_{\pi}^1 \& C_{1,\dots,5}$
- The potential is multiplied by a cutoff function exp[-(k/Λ)⁴]
- Chosen values: Λ = 500 & 600 MeV

The ${}^{3}\text{He}(\vec{n}, p){}^{3}\text{H}$ longitudinal asymmetry

Contact terms \rightarrow same structure as the part of the DDH pot. coming from ρ - and ω -exchanges it is possible to estimate $C_{1,...,5}$ from the values of the DDH coupling constants in units of 10^{-7} :

$$C_1^{\rm (DDH)} \approx 1 \ , \quad C_2^{\rm (DDH)} \approx +30 \ , \quad C_3^{\rm (DDH)} \approx -2 \ , \quad C_4^{\rm (DDH)} \approx 0 \ , \quad C_5^{\rm (DDH)} \approx +7$$

$$A_{z} = \left(a_{0}h_{\pi}^{1} + a_{1}C_{1} + a_{2}C_{2} + a_{3}C_{3} + a_{4}C_{4} + a_{5}C_{5}\right)\cos\theta$$

 p - ³H and n - ³He: solution of the 4-body scattering problem with the HH method [Viviani et al., PRC bf 82, 044001 (2010)]
 Strong interaction also derived from chiral EFT: N3LO NN potential [Entem and Machleidt, PRC 68, 041001 (2003)]
 + N2LO 3N interaction [Epelbaum et al., PRC 66, 064001 (2002)]

PRELIMINARY							
Λ [MeV]	a 0	a_1	a ₂	a ₃	a 4	a5	
500	-0.1444	0.0061	0.0226	-0.0199	-0.0174	-0.0005	
600	-0.1293	0.0081	0.0320	-0.0161	-0.0156	-0.0001	

From the experimental $p - \vec{p}$ longit. asymm. $\overline{A}_z^{pp}(E) = a_0^{(pp)}(E) \frac{h_{\pi}^1}{h_{\pi}} + a_1^{(pp)}(E) C$

 $C = C_1 + C_2 + 2(C_4 + C_5)$

 χ^2 analysis from the fit of the three expt. data

Values assumed for h_{π}^{1}

- h¹_π = 1 × 10⁻⁷ (lattice estimate [Wasem PRC 85, 022501 (2012)])
- $h_{\pi}^1 = 4.56 \times 10^{-7}$ (DDH "best value");
- $h_{\pi}^1 = 11.4 \times 10^{-7}$ (maximum value allowed in the DDH "reasonable range").

We assume $C_1 = 1$, $C_3 = -1$, $C_4 = 1$, C_5 chosen as specified below, and C_2 fixed to give (

	$\Lambda = 500 \text{ MeV}$			$\Lambda = 600 \text{ MeV}$		
SET	I	II		I	11	
h_{π}^{1}	1.0	4.56	11.4	1.0	4.56	11.4
C_5	5.0	10.0	20.0	5.0	10.0	20.0
C_2	13.7	28.5	56.2	14.6	28.4	54.2

Cumulative contributions to a_z in units of 10^{-7} ($A_z = a_z \cos \theta$) (PRELIMINARY) for the sets I, II, and III of the LEC's specified in the previous table

az	$\Lambda = 500 { m MeV}$			$\Lambda = 600 \text{ MeV}$		
SET	I	11		I	11	
OPE	-0.118	-0.537	-1.34	-0.099	-0.453	-1.13
TPE	-0.147	-0.669	-1.67	-0.131	-0.597	-1.49
RC	-0.144	-0.658	-1.65	-0.129	-0.589	-1.47
СТ	0.171	-0.012	-0.38	0.346	0.326	0.27

• Cancellation between the contributions coming from h_{π}^1 and C_2

• Mild dependence on Λ , enhanced by the cancellations