n3He Experimental Setup

- longitudinal holding field suppressed PC asymmetry
- RF spin flipper negligible spin-dependent neutron velocity
- ³He ion chamber both target and detector

n³He Principle of Measurement

Measure the asymmetry in the number of forward going protons in a ³He wire chamber as a function of neutron spin: $n+^{3}He \rightarrow ^{3}H+p+765$ keV

Directional PV asymmetry in the number of tritons

Directional PV asymmetry in the number of protons (much larger track length)

- wire chamber is both target and detector
- wires run vertical or horizontal

Design Criteria For the Chamber

n³He Asymetry

The asymmetry is a result of partial wave mixing due to a weak interaction perturbation:

$$\mathcal{A}_{PV} = \alpha_{PV} \frac{\left| \left\langle \psi_{f1} \left| \mathcal{H}_{S} \right| \psi_{i0} \right\rangle + \left\langle \psi_{f0} \left| \mathcal{H}_{S} \right| \psi_{i1} \right\rangle \right|}{\left| \left\langle \psi_{f0} \left| \mathcal{H}_{S} \right| \psi_{i0} \right\rangle \right|} = \alpha_{PV} \frac{\left| \left\langle f \left\| \mathcal{Q}_{PV} \right\| i \right\rangle \right|}{\left| \left\langle f \left\| \mathcal{Q}_{PC} \right\| i \right\rangle \right|} \cos \theta_{\sigma,k}$$
$$\left| \psi_{i,f} \right\rangle = \left| \psi_{i,f,\ell=0} \right\rangle + \alpha_{PV} \left| \psi_{i,f,\ell=1} \right\rangle$$

The important part here is the angular correlation between initial neutron spin and final particle momentum.

The proton and triton tracks both contribute to the signal:

$$I = I_{p} + I_{T} = f_{p}I_{p}^{O}(I + A_{p}\cos\theta_{p}) + f_{T}I_{T}^{O}(I + A_{T}\cos\theta_{T})$$

With energy deposition: $f_p \equiv f(\theta_p, z_p, E_n)$ and $f_T \equiv f(\theta_T, z_T, E_n)$

n³He Asymmetry

The triton deposits about a third of the energy of the proton:

$$I_p \approx 3I_T$$

 $A_p \approx 3A_T$

Proton and triton are emitted Back-to-back:

$$\cos \theta_p = -\cos \theta_T \equiv \cos \theta$$

So the experimental asymmetry is: $\mathcal{A}_{exp}^{i,j} = \frac{\mathcal{I}_{R}^{i,j} - \mathcal{I}_{L}^{i,j}}{\mathcal{I}_{R}^{i,j} + \mathcal{I}_{L}^{i,j}} = \frac{\mathcal{A}_{PV}^{i,j} \int \left(f_{p}^{i,j} - \frac{f_{T}^{i,j}}{3}\right) \cos \theta d\theta}{\int \left(f_{p}^{i,j} + \frac{f_{T}^{i,j}}{3}\right) d\theta}$ Determine energy deposition using MC simulations

tritons protons $E_N = 2.5 \text{ meV}$ $E_N = 2.5 \text{ meV}$ proton $cos(\theta)$ w.r.t. beam direction 22 30 triton $cos(\theta)$ w.r.t. beam direction 0.8 0.8 20 0.6 25 0.6 Energy deposit [MeV] 0.4 0.4 20 0.2 0.2 -0 15 -0 -0.2 -0.2 Energy (8 10 -0.4 -0.4 6 -0.6 -0.6 5 4 -0.8 -0.8 2 n n -10 -1₀ 10 18 20 2 6 8 12 14 16 20 4 2 8 10 16 18 4 6 12 14 Distance into chamber [cm] Distance into chamber [cm]

 $f_{p} \equiv f(\theta_{p}, \boldsymbol{Z}_{p}, \boldsymbol{E}_{n})$

 $f_{\mathcal{T}} \equiv f(\theta_{\mathcal{T}}, \boldsymbol{Z}_{\mathcal{T}}, \boldsymbol{E}_n)$

Statistical Error and Dilution

Define:

$$\xi^{i,j}(z^{i}, E_{n}^{j}) \equiv \frac{\int \left(f_{p}^{i,j} - \frac{f_{T}^{i,j}}{3}\right) \cos\theta d\theta}{\int \left(f_{p}^{i,j} + \frac{f_{T}^{i,j}}{3}\right) d\theta}$$

Then the error on the asymmetry is

$$\delta A_{PV} = \frac{1}{\sqrt{N}P_n} \sqrt{\sigma_D^2 + \sigma_{coll}^2}$$

with

$$\sigma_{D} = \frac{\sqrt{N}}{\sqrt{\sum_{i,j} \left(\frac{N_{i,j}}{(\xi^{i,j})^{2}} \right)}}$$

Determine efficiency and wavelength from simulations:

Nester Wesseles of Window Ontiningtion						
Neutron wavelength window Optimization						
C	hopping Phase	σ_d	δA^{-2}	Comments		
	(at 17 m)		$(\times 10^{6})$			
	244	???	1.259			
	234	6.60	1.29			
	244	6.55	1.31			
	254	6.51	1.33			
	284	6.33	1.35			
	300	6.24	1.356	$\lambda \simeq 0.3 \rightarrow 0.69 \text{ nm}$		
	320	6.10	1.35			
	360	5.8	1.311			
	500	5.0	1.019			

Effect of Wire Plane Spacing on Correlations							
W	Wire Planes Width		σ_d	σ_d			
		[mm]	(no correlation)	(with correlation)			
	10	20	5.27	6.24			
	20	10	4.19	5.97			
	40	5	3.37	5.90			

 $\sigma_d \simeq 6$

Statistical Error and Dilution

Statistical error based on neutron counting statistics and dilution factor.

Based on measured flux, we can get

 1.5×10^{10} n/s

per pulse on target.

We need two pulses to calculate the asymmetry.

So for a 5000 hr (208 days) run, the measurement error is

$$\delta A_{PV} = \frac{6}{0.96\sqrt{7.5 \times 10^{16}}} = 1.7 \times 10^{-8}$$

Theoretical n³He Asymmetry

- Full four-body calculation of strong scattering wave functions
- Using AV18 potential
- Evaluation of the weak couplings based on available nuclear and few body

 $\mathcal{O}_{PV} = a_{\pi}^{1} h_{\pi}^{1} + a_{\rho}^{0} h_{\rho}^{0} + a_{\rho}^{1} h_{\rho}^{1} + a_{\rho}^{2} h_{\rho}^{2} + a_{\omega}^{0} h_{\omega}^{0} + a_{\omega}^{1} h_{\omega}^{1}$

$$A_{p}^{\vec{n},^{3}\mathcal{H}e}$$
 (th.) $\approx 1.15 \times 10^{-7}$

So with this size we would achieve a 20% measurement in 116 days of running

$$\frac{\delta A_{PV}}{A_{PV}} = \frac{1.7 \times 10^{-8}}{1.15 \times 10^{-7}} = 0.15$$

Weak Couplings	From data	(A ^p _z) n³He →tp (AV18)
a ¹	h_{π}^{1} =-0.46	-0.189
a_{ρ}^{o}	h_{ρ}^{0} =-43	-0.036
a_{ρ}^{1}	$h_{\rho}^{1} = O$	0.019
a_{ρ}^{2}	$h_{\rho}^{2} = 37$	-0.0006
a _{\omega}^{~~O}	$h_{\omega}^{o}=14$	-0.0334
	$h_{\omega}^{1} = O$	0.0413

M. Viviani, R. Schiavilla, Phys. Rev. C. 82 044001 (2010) L. Girlanda et al. Phys. Rev. Lett. 105 232502 (2010)

Systematic Effects

The biggest advantage in this measurement is the low background and few systematic effects.

Only need to consider correlations that involve terms linear in neutron spin:

Invariant	Parity	Size	Comments
$\vec{\sigma}_n \cdot \vec{k}_p$	Odd	$1 imes 10^{-7}$	RMS value
$ec{\sigma}_n \cdot (ec{k}_n imes ec{k}_p)$	Even	$2 \times 10^{-6} \times 10^{-2} \times 10^{-2}$	size times alignment factors
$ec{\sigma}_n\cdotec{k}_p(ec{k}_n\cdotec{k}_p)^m$	Odd	$k_n r = 3.7 \times 10^{-5}$	gets smaller by 10^{-5} for
			each additional power (m)
$\vec{\sigma}_n \cdot (\vec{k}_n imes \vec{k}_p) (\vec{k}_n \cdot \vec{k}_p)^m$	Even	$k_n r = 3.7 \times 10^{-5}$	gets smaller by 10^{-5} for
			each additional power (m)
$\vec{\sigma}_n \cdot \vec{B}$	Even		Stern-Gerlach steering:
			analysis in progress
$\vec{\sigma}_{^{3}He} \cdot \vec{k}_{p} \text{ or } \vec{\sigma}_{^{3}He} \cdot \vec{k}_{n}$	Even		Polarization of ${}^{3}He$: small effect,
			can be countered with magnetic
			holding field reversal
$ec{\sigma}_n \cdot (ec{E} imes ec{v_n})$	Even	$1 imes 10^{-4}$	Mott-Schwinger Scattering
			for transverse polarization only