University of Kentucky, Physics 306 Homework #5, Rev. B, due Monday, 2022-02-21

1. The good, \ldots

a) The commutator [A, B] of two matrices A and B is defined as the matrix $[A, B] \equiv AB - BA$. Calculate $[\sigma_j, \sigma_k]$ for the *Pauli matrices* σ_i , i = x, y, z. Do they commute? Compare with H03#0: $\sigma_j \sigma_k = I \sigma_j \cdot \sigma_k + i \sigma_j \times \sigma_k$, treating the Pauli matrices $\sigma_k \sim \hat{e}_k$ as unit vectors.

b) Show that the commutator of A and B is antisymmetric: [A, B] = -[B, A], and bilinear: $[\alpha_i A_i, B_j \beta_j] = \alpha_i [A_i, B_j] \beta_j$. Thus it is a 'matrix version' of the vector cross product, so [A, A] = 0, and two matrices which commute are in the 'same direction' (both are diagonal in some basis).

c) Verify that the two matrices $A = \begin{pmatrix} 9 & -2 & -6 \\ -2 & 9 & -6 \\ -6 & -6 & -7 \end{pmatrix}$ and $B = \begin{pmatrix} 54 & 10 & -3 \\ 10 & -45 & 30 \\ -3 & 30 & 46 \end{pmatrix}$. commute. Simultaneously diagonalize both matrices. Are the eigenvectors orthogonal? *Hint:* Octave or Mathematica is your friend!

d) By adding and subtracting M = H + iK and its adjoint $M^{\dagger} = H - iK$, where $H^{\dagger} = H$ and $K^{\dagger} = K$ are Hermitian (note that A = iK is antisymmetric: $A^{\dagger} = -A$), show that any matrix M can be decomposed into its symmetric and antisymmetric parts, similar to how z = x + iy projects into its real and imaginary parts.

e) A normal matrix is one that commutes with its adjoint: $[N, N^{\dagger}] = 0$. Show that $[N, N^{\dagger}] = 2i[H, K]$, where N = H + iK. This shows that a normal matrix is one whose symmetric and antisymmetric parts commute. Thus normal matrices are the most general matrices that can be diagonalized with orthogonal eigenvectors. The eigenvalues of N are $n_j = h_j + ik_j$ where h_j and k_j are the eigenvalues of H and K. Thus N acts like independent complex numbers!

f) [bonus: In analogy with polar complex numbers $z = e^{\sigma+i\phi} = \rho u$, where $\rho = e^{\sigma} > 0$ and $u = e^{i\phi}$ is a unit: $|u|^2 = u^*u = 1$, any matrix A has a polar decomposition A = RS into a rotation R and a stretch S, which are the building blocks of all linear operators. By taking the exponential $M = e^N$ of N = H + iK, show that any normal matrix can be decomposed into M = UP, where U is unitary $(U^{\dagger}U = I)$ and P is positive definite $(P^{\dagger} = P$ with non-negative eigenvalues).]

g) [bonus: Using the polar decomposition A = RS, where $R^{\dagger}R = I$ and $S^{\dagger} = S$, and diagonalizing $S = VWV^{\dagger}$, show that any matrix may be decomposed $A = UWV^{\dagger}$, where U = RV and V are unitary, and W is diagonal. This *singular value decomposition* of matrices is the generalization the spectral theorem for all matrices. Because it involves both stretches and rotations, every *singular value* (eigenvalue) w_i has two eigenvectors: a *left singular vector* \vec{u}_i and a *right singular vector* \vec{v}_i . This is useful for transformations from one vector space into another, not just operators.]

2. The bad, ...

a) The Pauli *ladder operators* $\sigma_{\pm} = (\sigma_x \pm i\sigma_y)/2$ transform the unit vectors $(1,0)^T$ and $(0,1)^T$ from one to the next along a chain, *annihilating* the last one. Calculate $\sigma_{\pm}, \sigma_{\pm}^2, \sigma_{\pm}^3, \ldots, \sigma^n$. How does this generalize to higher dimension?

b)Calculate the doubly *degenerate* eigenvalue λ of σ_{\pm} and show that they have only one eigenvector \vec{v}_1 . The other vectors associated with λ are called *generalized eigenvectors*, defined by $M\vec{v}_k = \vec{v}_k\lambda_k + \vec{v}_{k-1}$. Note that \vec{v}_1 follows the pattern if we define $\vec{v}_0 = \vec{0}$. Find the matrix of M in the basis $\{\vec{v}_k\}$ (called a Jordan block).

c) Calculate the adjoint σ_{\pm}^{\dagger} , the projections $P_{+} = \sigma_{+}\sigma_{-}$ and $P_{-} = \sigma_{-}\sigma_{+}$, and the commutators $[\sigma_{+}, \sigma_{-}]$, $[I, \sigma_{\pm}]$, and $[\sigma_{z}, \sigma_{\pm}]$. Note that σ_{\pm} commutes with I because its eigenvalues are all the same, but not with σ_{z} with distinct eigenvalues. This is true in general. [bonus: use the last commutation relation to show that if \vec{v} is an eigenvector of σ_{z} , the $\sigma_{\pm}\vec{v}$ is also an eigenvector. Thus σ_{\pm} raise an lower one one eigenvector of σ_{z} into another, like climbing up or down the rungs of a ladder, which is where their name comes from.]

d) Show that $\sigma_x \sigma_{\pm} \sigma_x^{-1} = \sigma_{\mp}$ Find the most general 2×2 nilpotent operator via the similarity transform $V \sigma_+ V^{-1}$ of σ_+ into a generic basis $V = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Represent it as an outer product. What is its geometrical interpretation? Do the same for a generic diagonalizable operator to represent it as the sum of two outer products (its spectral decomposition).

e) Find the matrix of the derivative operator D = d/dx in the linear space of polynomials $A(x) = a_0 + a_1x + a_xx^2 + \ldots + a_nx^n$, using the monomials $\hat{e}_k = x^k$ as basis functions. Show that $D^n = 0$ and, thus the derivative is nilpotent.