University of Kentucky, Physics 306 Homework #6, Rev. B, due Monday, 2022-02-28

1. The Fourier Series is an application of using an orthogonal basis to extract components of a generalized vector (function). Orthogonality is cruitial, because otherwise it would be impossible to solve the linear system of equations (invert an infinite-dimesional matrix) to obtain each component.

a) Submit a screenshot of your completed Level 3 in the Fourier: Making Waves Wave Game.

b) Calculate the Fourier cosine series $f(x) = \sum_{n=1}^{\infty} a_n \cos(n\pi x/L)$ of $f(x) = kx^2$ over the interval $-L/2 \le x \le L/2$. What does the periodic series look like outside this interval? Compare the inner product $\langle kx^2 | kx^2 \rangle = \int_{-L/2}^{L/2} dx (kx^2)^2$ with that of its Fourier components $\sum_n a_n^2$. [it's a rotation!]

2. The Legendre Polynomials $P_{\ell}(x)$ appear in the solution of Laplace's equation in spherical coordinates. They can be defined as *the* series of orthogonal polynomials with respect to weight w(x) = 1 over the range $-1 \le x \le 1$, of degree $\ell = 0, 1, 2, \ldots$, standardized to $P_{\ell}(1) = 1$.

a) Show that $\langle x^m | x^n \rangle = \frac{2}{m+n+1} [m+n \text{ is even}]$ or 0 [m+n is odd]. Apply the Gram-Schmidt procedure to the basis of monomials $1, x, x^2, \ldots$ to generate the series of $P_{\ell}(x)$ up to order $\ell = 4$. Calculate the *nomalization* $h_{\ell} = \langle P_{\ell} | P_{\ell} \rangle$. Expand $f(x) = x^4$ in the Legendre basis.

b) Show that these basis functions $P_{\ell}(x)$ are eigenfunctions of the linear Lengendre differential operator $L = -\frac{d}{dx}(1-x^2)\frac{d}{dx}$ by direct calculation of their eigenvalues $L[P_{\ell}(x)] = \lambda P_{\ell}(x)$.

3. The Sturm-Liouville 2nd order linear differential operator

$$L[y(x)] \equiv \frac{1}{w(x)} \left[\frac{d}{dx} p(x) \frac{d}{dx} - q(x) \right] y(x) \tag{1}$$

is self-adjoint, $L^{\dagger} = L$, [it's a stretch!] with respect to the inner product

$$\langle y_1 | y_2 \rangle \equiv \int_a^b w(x) dx \ y_1(x)^* \ y_2(x)$$
 (2)

if we impose the boundary conditions y(a)w(a) = y(b)w(b) = 0. Thus L has real eigenvalues λ_i and a complete set of orthogonal eigenfunctions. Any function f(x) has the expansion $|f\rangle = \sum_i |u_i\rangle f_i$ or $f(x) = \sum_i u_i(x)f_i$, with components $f_i = \langle u_i | f \rangle / \langle u_i | u_i \rangle = \int_a^b w(x)dx \ u_i(x)^* f(x)/h_i$.

a) Show that L is self-adjoint or Hermitian. *Hint:* use the definition $\langle f|H^{\dagger}g\rangle \equiv \langle Hf|g\rangle$ to show that the operator $D = \frac{1}{w} \frac{d}{dx}$ is anti-Hermitian and apply it to the composition of operators in L. [bonus: Show that any linear 2nd-order differential operator over any weight can be put in this form.]

b) Given eigenfunctions $L|u_i\rangle = \lambda_i |u_i\rangle$, show that $\lambda_i \in \mathbb{R}$ and that $\langle u_i|u_j\rangle = 0$ if $\lambda_i \neq \lambda_j$. Note that completeness is much harder to prove. Operate L on the expansion of $|f\rangle$ in the basis $|u_i\rangle$ to show that its *spectral decomposition* is $L = \sum_i \lambda_i |u_i\rangle \langle u_i|$. Do the same for the identity $I|f\rangle = |f\rangle$.

c) Compile a chart of $w(x), a, b, p(x), q(x), \lambda_i, h_i$ for each of these orthogonal function bases: i) cylindrical harmonics $e^{im\phi}$; ii) associated Legendre functions $P_{\ell}^{|m|}(x)$; iii) Fourier series $\sin(k_n x)$; iv) Bessel functions $J_m(k_n x)$; v) spherical Bessel functions $j_l(k_n x)$; vi) Hermite polynomials $H_n(x)$; vii) associated Laguere polynomials $L_n^{(\alpha)}(x)$. [see NIST Digital Library of Mathematical Functions]