University of Kentucky, Physics 306 Homework #7, Rev. A, due Monday, 2022-03-21

1. Vectors in curvilinear coordinates (q^1, q^2, q^3) have a natural coordinate basis $\vec{b}_i \equiv \partial \vec{r} / \partial q^i$ and reciprocal basis $\vec{b}^i \equiv \nabla q^i = \partial q^i / \partial \vec{r}$. Note that each basis vector is actually a vector field (a function of position). The most common coordinate systems are Cartesian $q^i = (x, y, z)$, cylindrical $q^i = (\rho, \phi, z)$, and spherical $q^i = (r, \theta, \phi)$, defined by the transformations $x + iy = \rho e^{i\phi}$ and $z + i\rho = re^{i\theta}$, respectively. These are all orthogonal, right-handed systems, for which both bases are aligned with the common orthonormal basis $\hat{e}_i = \vec{b}_i / h_i = \vec{b}^i h_i$, where $h_i = |\vec{b}_i| = 1/|\vec{b}^i|$ is called the scale factor.

a) Determine the coordinate transformation $q^i(q^{i'})$ from each coordinate system to each of the others. *Hint: invert and combine the two transformations above.*

b) For each coordinate system, illustrate the three coordinate isosurfaces $q^i(\vec{r}) = q_0^i$ (constant) passing through an abritrary point \vec{r}_0 , labeling lengths and angles in your diagram. For each coordinate q^i , identify the curve $\vec{s}(q^i; q_0^j, q_0^k)$ at the intersection of two surfaces of constant $q^j = q_0^j$ and $q^k = q_0^k$.

c) For cylindrical and spherical coordinates, calculate $\vec{b}_i = \partial \vec{r} / \partial q^i$ using $\vec{dr} = \hat{x} dx + \hat{y} dy + \hat{z} dz$. Normalize $\vec{b}_i = \hat{e}_i h_i$ to find the *unit vectors*. Note that the scale factors h_{θ} and h_{ϕ} for angular coordinates are just the radius of curvature, according to the arc length formulae $ds_{\theta} = r d\theta$ and $ds_{\phi} = \rho d\phi$.

d) Construct the transformation matrices between unit bases, by considering rotations $R_z(\phi)$ (rotation by an angle ϕ about the z-axis) and $R_{\phi}(\theta)$ (about the y-axis). Compare with part c).

e) For each coordinate system, calculate the *line element* $\vec{dl} = \hat{e}_i h_i dq^i$, the *area element* $\vec{da} = \frac{1}{2}\vec{dl} \times \vec{dl} = \hat{e}_k h_i h_j dq^i dq^j$, and the volume element $d\tau = \frac{1}{3}\vec{dl} \cdot \vec{da} = h_1 h_2 h_3 dq^1 dq^2 dq^3$.

f) For each coordinate system, calculate the metric $g_{ij} = \mathbf{b}_i \cdot \mathbf{b}_j = \text{diag}(h_1^2, h_2^2, h_3^2)$.

g) Invert the cylindrical coordinate functions to obtain $(\rho, \phi, z) = f^{-1}(x, y, z)$. Calculate the covariant basis $\mathbf{b}^i = \nabla q^i = \hat{\mathbf{e}}_i/h_i$ and verify that $\mathbf{b}_i \cdot \mathbf{b}^j = \delta_i^j$. Calculate $g^{ij} = \mathbf{b}^i \cdot \mathbf{b}^j = \text{diag}(h_1^2, h_2^2, h_3^2)$. [bonus: Do the same for spherical coordinates.]

2. The magnetic analog of *Coulomb's law* (with a scalar charge element $dq = \lambda dl = \sigma da = \rho d\tau$) is the **Biot-Savart law** (with a vector current element $vdq = I\vec{dl} = \vec{K}da = \vec{J}d\tau$):

$$\boldsymbol{B} = \frac{\mu_0}{4\pi} \oint' \frac{\boldsymbol{v} dq' \times \boldsymbol{\imath}}{\boldsymbol{\imath}^3} \approx \sum_i \left(\Delta \boldsymbol{B} = \frac{\mu_0}{4\pi} \frac{I \Delta \boldsymbol{\ell} \times \boldsymbol{\imath}_0}{\boldsymbol{\imath}_0^3} \right)_i, \tag{1}$$

where $\Delta \ell$ is the displacement vector from the beginning to the end of each current segment, and \mathbf{z}_0 is the displacement vector from the middle of each current segment \mathbf{r}'_0 to the field point \mathbf{r} . The approximation is that all of the current is concentrated at \mathbf{r}'_0 instead of spread out along the length of the segment from $\mathbf{r}'_0 - \Delta \ell/2$ to $\mathbf{r}'_0 + \Delta \ell/2$. In this problem we first calculate a correction term to account for this difference, and then calculate the exact B-field due to each straight segment.

a) To analytically integrate the Biot-Savart law along a single straight segment of the path, parametrize the segment $\mathbf{r}'(s)$ with the parameter s, ranging from $s = -\frac{1}{2}$ at the beginning to $s = +\frac{1}{2}$ at the end of the segment. The parametrization involves the constant vectors \mathbf{r}'_0 (the center of the segment) and $\Delta \boldsymbol{\ell}$ (displacement along the segment). Calculate the line element $d\mathbf{l} = \frac{d\mathbf{r}'}{ds}ds$. Calculate $\boldsymbol{\star}$ as a function of $\boldsymbol{\star}_0$, $\Delta \boldsymbol{\ell}$, and s. Substitute these into the Biot-Savart formula and factor out the constant approximation of Eq. 1] to obtain

$$\Delta \boldsymbol{B}(\boldsymbol{r}) = \frac{\mu 0}{4\pi} \frac{I \Delta \boldsymbol{\ell} \times \boldsymbol{\varkappa}_0}{\boldsymbol{\varkappa}_0^3} T(\alpha, \beta), \tag{2}$$

where the integral $T(\alpha, \beta)$ along s depends on $\alpha = \mathbf{z}_0 \cdot \Delta \ell / \mathbf{z}_0^2$ and $\beta = \Delta \ell^2 / \mathbf{z}_0^2$.

b) [bonus: Approximate the integrand of $T(\alpha, \beta)$ to order s^2 and integrate to obtain the correction term $T(\alpha, \beta) \approx 1 + \frac{1}{8}(5\alpha^2 - \beta)$ for the case where all the current is at the center of the segment.]

c) [bonus: Calculate the exact integral $T(\alpha, \beta)$ and show that $\Delta \boldsymbol{B} = \frac{\mu_0 I}{4\pi} \frac{\Delta \boldsymbol{\ell} \times \boldsymbol{\lambda}_0}{(\Delta \boldsymbol{\ell} \times \boldsymbol{\lambda}_0)^2} \Delta \boldsymbol{\ell} \cdot (\hat{\boldsymbol{\lambda}}_{-} - \hat{\boldsymbol{\lambda}}_{+})$, where $\boldsymbol{\lambda}_{\pm} = \boldsymbol{r} - \boldsymbol{r}'(\pm \frac{1}{2})$ is the displacement vector from each end of the segment to the field point and $\hat{\boldsymbol{\lambda}}_{\pm} = \boldsymbol{\lambda}_{\pm}/\boldsymbol{\lambda}_{\pm}$.]

d) [bonus: show that this is equivalent to $\Delta \boldsymbol{B} = \frac{\mu_0 I}{4\pi} \frac{(\boldsymbol{\ell}_- \times \boldsymbol{\ell}_+)(\boldsymbol{\ell}_- + \boldsymbol{\ell}_+)}{\boldsymbol{\ell}_- \boldsymbol{\ell}_+ (\boldsymbol{\ell}_- - \boldsymbol{\ell}_+ + \boldsymbol{\ell}_- \cdot \boldsymbol{\ell}_+)}$.

3. Current sheet—surface currents can be approximated numerically by a tiling of quadrilaterals like the one shown below, with current I flowing parallel to the top and bottom edges, from left to right. Let the vector $\ell = \ell_+ = \ell_-$ run along either the top or bottom edge, parallel to the current; $w = w_- = w_+$ from bottom to top along the left or right edge; and r_0 be the point at the center of the parallelogram as shown in the diagram.

a) Parametrize the surface of the parallelogram as r'(s,t), with the top and bottom edges are at $t = +\frac{1}{2}$ and $-\frac{1}{2}$, and the left and right edges are at $s = +\frac{1}{2}$ and $-\frac{1}{2}$ respectively.

b) Write down the Biot-Savart integral for the magnetic field in terms of integration parameters s, t and constants $\mathbf{a}_0 \equiv \mathbf{r} - \mathbf{r}'_0, \mathbf{\ell}$, and \mathbf{w} .

c) [bonus: Expand in powers of s and t, to calculate the integral up to second order.]

d) [bonus: It is not possible to tile arbitrary surfaces with parallelograms—we need all four points on the quadrilateral to be arbitrary. To generalize this solution, let ℓ_0 , w_0 be the corresponding vectors through the center of the quadrilateral. We need one more vector $u_0 = \ell_+ - \ell_- = w_+ - w_-$, where ℓ_{\pm} run across the top and bottom, and w_{\pm} run along the right and left sides of the diagram. Generalize steps (a)-(c) to calculate B(r).]