University of Kentucky, Physics 306 Homework #10, Rev. C, due Friday, 2022-04-22

1. Sagging roof potential Solve Laplace's equation for the potential V(x, y) defined on the region -a < x < a and -b < y < b with boundary conditions $V(x, \pm b) = 0$ and $V(\pm a, y) = V_0(1-|y/b|)$. Sketch the solution and its first two Fourier components.

2. Drumhead waves are described by the PDE $(\frac{1}{v^2} \frac{\partial^2}{\partial t^2} - \nabla_{\perp}^2) \eta(\rho, \phi, t) = 0$, where the wave velocity $v = \sqrt{\gamma/\sigma}$ depends on the surface tension γ and the mass density σ of the drumhead.

a) Use $\partial_t e^{i\omega t} = i\omega e^{i\omega t}$ to obtain the Helmholtz equation $(\nabla_{\perp}^2 + k^2)\eta = 0$ by replacing ∂_t with its *eigenvalue*. Determine the *dispersion relation* between spatial k and temporal ω frequencies.

b) Expand $\nabla^2_{\perp} \eta$ in cylindrical coordinates and show the radial part has the equivalent forms

$$\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} = \frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho} = \frac{1}{\sqrt{\rho}} \frac{\partial^2}{\partial \rho^2} \sqrt{\rho} + \frac{1}{4\rho^2} \frac{\partial^2}{\partial \rho} \frac{\partial^2}{\partial \rho} = \frac{1}{\sqrt{\rho}} \frac{\partial^2}{\partial \rho} \sqrt{\rho} + \frac{1}{4\rho^2} \frac{\partial^2}{\partial \rho} \frac{\partial^2}{\partial \rho} = \frac{1}{\rho} \frac{\partial^2}{\partial \rho} \frac{\partial^2}{\partial \rho} + \frac{1}{4\rho^2} \frac{\partial^2}{\partial \rho} \frac{\partial^2}{\partial \rho} = \frac{1}{\rho} \frac{\partial^2}{\partial \rho} \frac{\partial^2}{\partial \rho} + \frac{1}{4\rho^2} \frac{\partial^2}{\partial \rho} \frac{\partial^2}{\partial \rho} = \frac{1}{\rho} \frac{\partial^2}{\partial \rho} \frac{\partial^2}{\partial \rho} + \frac{1}{4\rho^2} \frac{\partial^2}{\partial \rho} + \frac{1}{4\rho^2} \frac{\partial^2}{\partial \rho} \frac{\partial^2}{\partial \rho} = \frac{1}{\rho} \frac{\partial^2}{\partial \rho} \frac{\partial^2}{\partial \rho} + \frac{1}{4\rho^2} \frac{\partial^2}{\partial \rho} \frac{\partial^2}{\partial \rho} + \frac{1}{4\rho^2} \frac{\partial^2}{\partial \rho} + \frac{1}{4$$

c) Use the eigenvalue equation $\partial_{\phi} \Phi_m(\phi) = im \Phi_m(\phi)$ to factor out the ϕ dependence in the Laplacian and obtain the *Bessel equation*. Plot the first three *Bessel functions* $J_0(x)$, $J_1(x)$, and $J_2(x)$, where $x = k\rho$. Find the lowest-order Taylor approximation of each function as $x \to 0$ and the asymptotic approximation as $x \to \infty$. The energy spreads out as the circular wavefront expands.

d) Use the boundary conditions $\eta(\rho, 0) = \eta(\rho, 2\pi)$ and $\eta_{,\phi}(\rho, 0) = \eta_{,\phi}(\rho, 2\pi)$ to show that m must be an integer. Use the linearity of ∂_{ϕ} on $\Phi_m(\phi) \pm \Phi_{-m}(\phi)$ to show that $\cos(m\phi)$ and $\sin(m\phi)$ are also eigenfunctions of ∂_{ϕ}^2 (but not ∂_{ϕ} —why?) and determine the eigenvalues. Apply the boundary condition $\eta(a, \phi) = 0$ to find the possible values of k, in terms of x_{nm} , the n^{th} zero of the Bessel function $J_m(x)$. For each combination of m, n plot the node lines where $\eta_{mn}(\rho, \phi) = 0$ and find the vibrational frequency ω_{mn} of this mode.

e) [bonus: how could this solution be modified to solve the three-dimensional wave equation $(\partial_t^2/v^2 - \nabla^2)\Psi(\rho, \phi, z, t) = 0$ with boundary conditions $\Psi(a, \phi, z, t) = \Psi(\rho, \phi, \pm b, t) = 0$?]

3. Harmonics are the common multipole angular solutions of any PDE involving the Laplacian.

a) Use the cylindrical harmonics $\Phi_m(\phi) = e^{im\phi}$ (eigenfunctions of ∂_{ϕ}) and the third form of ∇^2_{\perp} from #2b) to find two independent solutions $R_m(\rho)$ of the two-dimensional Laplace equation: one which is finite at the origin $\rho = 0$ and the other as $\rho \to \infty$. Express these planar hamonics in terms of $(\rho e^{\pm i\phi})^{|m|} = A_m + iB_m$. Expand A_m and B_m and explicitly verify them as solutions to Laplace's equation in Cartesian coordinates x, y up to m = 3.

b) Expand $\nabla^2 V(r, \theta, \phi)$ in spherical coordinates and show the radial part has the forms

$$\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \;\; = \;\; \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} \;\; = \;\; \frac{1}{r} \frac{\partial^2}{\partial r^2} r$$

c) Factor out the ϕ -dependence as in #2c) and identify the θ -operator $L^2 = \frac{-d}{dx}(1-x^2)\frac{d}{dx} + \frac{m^2}{1-x^2}$, where $x = \cos \theta$ [distinct from the Cartesian coordinate x and $x = k\rho$ from #2d)!], to obtain the general Legendre equation, for polar waves. Restriction to m = 0 yields the Legendre polynomials of H06#2. Continuity at the poles $\theta = 0, \pi$ requires that $\ell = |m|, |m+1|, |m+2|, \ldots, \infty$. List all ten polar eigenvectors $P_{\ell}^{|m|}(x)$ up to $\ell = 3$. **d)** Verify that the combined *spherical harmonics* $Y_{lm} = (-1)^m \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_l^m(\cos\theta) e^{im\phi}$ are eigenfunctions of the operator $L^2(\theta, \phi)$ with eigenvalues $\lambda = \ell(\ell+1)$. They represent the atomic s, p, d, f orbitals for $\ell = 0, 1, 2, 3$. Draw the node lines of each ℓ, m -mode on a sphere.

e) Write ∇^2 using the third form of part 3b) and L^2 . Factor out the angular dependence and solve the radial Laplace equation for the two eigenfunctions $R_l(r)$ for each ℓ as in part a) to obtain the *solid harmonics* $R_\ell^m(\mathbf{r})$ and $I_l^m(\mathbf{r})$. Expand $R_\ell^m(\mathbf{r})$ in Cartesian coordinates, factoring out the planar harmonic in each.

f) [bonus: solve the Laplace boundary value problem in all space with a point flux source at $\mathbf{r}' = (r_0, \theta_0, \phi_0)$ to obtain the potential $V(\mathbf{r}) = \sum_{lm} R_l^{m*}(\mathbf{r}') I_l^m(\mathbf{r})$ if r < r' or $\sum_{lm} R_l^{m*}(\mathbf{r}') I_l^m(\mathbf{r})$ if r > r'. $Q_{lm} = \int dq' R_l^{m*}(\mathbf{r}')$ is the interior $[I_l^{m*}(\mathbf{r}')$ the exterior] multipole moments of a charge distribution, and $I_l^m(\mathbf{r})$ or $R_l^m(\mathbf{r})$ are their corresponding potentials. Compare with the point potential Green's function $V(\mathbf{r}) = \frac{1}{4\pi r^2}$ to obtain the addition theorem $\frac{1}{2r} = \sum_{\ell=0}^{\infty} \frac{r_{<}^\ell}{r_{>}^{\ell+1}} P_\ell(\cos\gamma)$, where γ is the angle between \mathbf{r} and \mathbf{r}' and $P_\ell(\cos\gamma) = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} Y_{lm}^*(\theta', \phi') Y_{lm}(\theta, \phi)$, and $r_{<}, r_{>}$ are the lesser and greater values of r, r', respectively.]

e) [bonus: Show that the spherical solution of the Helmholtz equation $(\nabla^2 + k^2)j_l(kr)Y_{lm}(\theta, \phi)$ is similar to cylindrical with $\ell = m + \frac{1}{2}$, and thus the solutions are the *spherical Bessel functions* $j_l(kr) = \sqrt{\frac{\pi}{2kr}}J_{\ell+1/2}(kr)$. The same principle holds in general for all potentials. Calculate and illustrate the modes of a spherical wave confined to r < a in the same manner as #2d).]