University of Kentucky, Physics 306 Homework #2, Rev. A, due Monday, 2022-01-30

1. Projections: relational versus parametric linear/planar geometry.

a) Show graphically that the following equations define the set of points $\{x\}$ on a line or plane,

	relational	parametric
line	$\{ oldsymbol{x} \mid oldsymbol{a} imes oldsymbol{x} = oldsymbol{d} \}$	$\{ \boldsymbol{x} = \boldsymbol{x}_1 + \boldsymbol{a} lpha \qquad lpha \in \mathbb{R} \}$
plane	$\{ \boldsymbol{x} \mid \boldsymbol{A} \cdot \boldsymbol{x} = D \}$	$\{oldsymbol{x} = oldsymbol{x}_2 + oldsymbol{b}eta + oldsymbol{c}\gamma \mid eta, \gamma \in \mathbb{R}\}$

where a, d, A, D are constants which define the geometry, $x_{1,2}$ are fixed points on the line and plane respectively, and α, β, γ are parameters that vary along the line/plane (they uniquely parametrize points in the line/plane). [bonus: Show the 5th relation $\{x = x_2 + A \times \delta \mid \delta \in \mathbb{R}^3\}$.]

b) What constraint between a and d is implicit in the formula $a \times x = d$? What is the relation between b, c, and A? Substitute x of each parametrization into its relational equation to show the consistency between the two forms and to derive d and D in terms of a, x_1 and A, x_2 .

c) Define $\tilde{a} \equiv A/(a \cdot A)$, which is parallel to A, and *normalized* in the sense that $a \cdot \tilde{a} = 1$. Using the BAC-CAB rule, show that $x = a(\tilde{a} \cdot x) - \tilde{a} \times (a \times x)$ for all x. Illustrate this non-orthogonal projection of x onto vectors x_1 parallel to the line plus x_2 parallel to the plane. [bonus: use this to calculate the point x_0 at the intersection of the line and plane in terms of a, d, A, D. Verify this by showing that x_0 satisfies the relational equation for both the line and plane.]

d) Let $\tilde{a} \equiv \frac{\vec{b} \times \vec{c}}{\vec{a} \cdot \vec{b} \times \vec{c}}$, $\tilde{b} \equiv \frac{\vec{c} \times \vec{a}}{\vec{a} \cdot \vec{b} \times \vec{c}}$, and $\tilde{c} \equiv \frac{\vec{a} \times \vec{b}}{\vec{a} \cdot \vec{b} \times \vec{c}}$, where the arrows on $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ distinguish them from their covectors $\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}, \tilde{\boldsymbol{c}}$. The definition of $\tilde{\boldsymbol{a}}$ is the same as in c) with $\boldsymbol{A} = \vec{b} \times \vec{c}$. Calculate the nine combinations of $(\vec{a}, \vec{b}, \vec{c})^T \cdot (\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}, \tilde{\boldsymbol{c}}) = I$, i.e. $\vec{a} \cdot \tilde{\boldsymbol{a}} = 1, \vec{a} \cdot \tilde{\boldsymbol{b}} = 0, \ldots$ to show they are mutually orthonormal. In this sense, $(\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}, \tilde{\boldsymbol{c}})$ is the dual basis of $(\vec{a}, \vec{b}, \vec{c})$. [bonus: Show using Cramer's rule that $[\tilde{\boldsymbol{a}}|\tilde{\boldsymbol{b}}|\tilde{\boldsymbol{c}}] = [\vec{a}|\vec{b}|\vec{c}|^{-1}$, i.e. that it is a reciprocal basis.]

e) The contravariant components of \boldsymbol{x} are defined as the components (α, β, γ) that satisfy the equation $\boldsymbol{x} = \boldsymbol{\vec{a}}\alpha + \boldsymbol{\vec{b}}\beta + \boldsymbol{\vec{c}}\gamma$; i.e., $(\boldsymbol{\vec{a}}, \boldsymbol{\vec{b}}, \boldsymbol{\vec{c}})$ is the contravariant basis. Using $\boldsymbol{x} \cdot \boldsymbol{\tilde{a}}$, etc., calculate the three contravariant components of \boldsymbol{x} in terms of dot products. Likewise, find the covariant components $(\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma})$ of \boldsymbol{x} , defined as the components $(\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma})$ which satisfy $\boldsymbol{x} = \tilde{\boldsymbol{a}}\tilde{\alpha} + \tilde{\boldsymbol{b}}\tilde{\beta} + \tilde{\boldsymbol{c}}\tilde{\gamma}$; i.e. $(\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}, \tilde{\boldsymbol{c}})$ is the covariant basis.

2. The **Pauli matrices**, defined as $\sigma_x \equiv \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y \equiv \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z \equiv \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, are used to describe quantum mechanical spin-1/2 particles. Show that $\sigma_j \sigma_k = \delta_{jk}I + i\varepsilon_{jk\ell}\sigma_\ell$. What is the triple product $\sigma_x \sigma_y \sigma_z$? Thus σ_j acts like a basis vector, the product of the Pauli matrices has the structure of the dot, cross, and triple products.

[bonus: Show that product of *Dirac matrices* is $\gamma^{\mu}\gamma^{\nu} = g^{\mu\nu}I + i\sigma^{\mu\nu}$ and calculate the components $g^{\mu\nu}$ and the matrices $\sigma^{\mu\nu}$.]