University of Kentucky, Physics 306 Homework #4, Rev. B, due Monday, 2023-02-13

1. Similarity transforms and invariants of the Pauli matrices $\sigma_x, \sigma_y, \sigma_z$ and in general.

a) What are the eigenvectors and eigenvalues of σ_z ? Diagonalize σ_x and σ_y to obtain their eigenbasis $U_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ and $U_y = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$. Verify that U_x and U_y are unitary.

b) Justify the eigenequations $\sigma_x U_x = U_x \sigma_z$ and $\sigma_y U_y = U_y \sigma_z$. For i, j=x, y, z, find the matrices U_{ij} of the similarity transforms $\sigma_i = U_{ij}\sigma_j U_{ij}^{\dagger}$ (the i, j, and ij are not component indices!).

c) [bonus: The *trace* of a matrix is the sum of its diagonal elements: $trA = A_{ii}$. Calculate tr(0) and $tr(\sigma_i)$. Show that tr(ABC) = tr(BCA) = tr(CAB) but not necessarily tr(ABC) = tr(CBA). Thus if $A' = UAU^{\dagger}$ then tr(A') = tr(A), i.e. the trace, or 'perimeter', of A is invariant.]

d) [bonus: The determinant of a matrix is the fully antisymmetric product of one element in each row or column: det $A = \varepsilon_{ijk}A_{1i}A_{2j}A_{3k} = \varepsilon_{ijk}A_{i1}A_{j2}A_{k3}$. Note that det $(A^{\dagger}) = \det(A)^*$ and det $(AB) = \det(A)\det(B)$. Calculate det(I) and det (σ_i) . Show that if $U^{\dagger}U = I$ then $|\det(U)| = 1$, and if $A' = UAU^{\dagger}$, then det $(A') = \det(A)$, i.e. the determinant, or 'volume', of A is invariant. Show that exp(tr(A)) = det $(\exp(A)$), for example, exp(tr(0)) = 1 = det $(\exp(0) = I)$.]

e) [bonus: Show that the characteristic equation $|A - \lambda I| = \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0 = 0$, substituting $\lambda \to A$ in the second equality, is invariant under similarity transforms. Thus A has n independent invariants. The first and last coefficients a_{n-1} and a_0 are tr(A) and det(A), respectively, while the others are k-dimensional 'perimeters', for example, surface area, of the transformation.]

f) [bonus: Prove the Cayley-Hamilton Theorem (that any matrix A satisfies its own characteristic equation) for the case of diagonal matrices. The full theorem follows from the invariance of the characteristic equation. Show that $A^{-1} = -(A^{n-1} + a_{n-1}A^{n-2} + \ldots + a_1I)/a_0$.]

2. Stretches. In analogy with the *polar decomposition* $w = x + iy = \rho e^{i\phi}$ of complex numbers, any matrix A can be decomposed A = RS into a stretch S and a rotation R, which are the building blocks of all linear operators. This problem explores the structure of stretches.

a) A symmetric matrix S is guaranteed to have a complete set of eigenvectors $V = (v_1, v_2, ...)$ and corresponding eigenvalues $\lambda_1, \lambda_2, ...$, such that $Sv_i = v_i\lambda_i$. Augment these n equations to obtain SV = VW, where $W = \text{diag}(\lambda_1, \lambda_2, ...)$, and thus show $S = VWV^{\dagger}$ and $W = V^{\dagger}SV$.

b) Show that the eigenvalues of S must be real: $\lambda^* = \lambda$, and that two eigenvectors v_i, v_j of S with distinct eigenvalues $\lambda_i \neq \lambda_j$ must be orthogonal: $v_i \cdot v_j = 0$, and thus show the matrix of eigenvectors is unitary: $V^{\dagger}V = I$. [bonus: Interpret the similarity transforms geometrically.]

c) Calculate the eigenvalues and eigenvectors of $M_z = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ Do they look familiar? Show that $M_z = VWV^{\dagger} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}$ and $e^{M_z\phi} = Ve^{W\phi}V^{\dagger} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} e^{-i\phi} & 0 \\ 0 & e^{i\phi} \end{pmatrix} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}$. Multiply this out to verify H03#1b). This is an example of the *normal matrix analogy*.