
University of Kentucky, Physics 306
Homework #8, Rev. A, due Monday, 2023-04-03

1. The gradient, curl, and divergence are all applications of d in different dimensions. They are
defined as df = ∇f ·dl, d(A ·dl) = (∇×A) ·da, d(B ·da) = (∇ ·B) ·dτ , respectively, in terms of
the differential operator d = dqi∂i and elements dl = êihidq

i, da = 1
2dl×dl, dτ = 1

3dl ·da.

a) Apply these definitions to scalar f , polar vector A, and axial vector B fields to obtain

∇f = df
dr = êi

hi

∂
∂qi
f , ∇×A = ddr·

da A = êi
hjhk

∂
∂qj
hkAk, ∇ ·B = dda·

dτ B = 1
h1h2h3

∂
∂qk

hihjBk, where

i, j, k are cyclic and 1
dr is the inverse transformation of dr· from {x̂, ŷ, ẑ} to {dx, dy, dz}, etc.

b) Expand a) in Cartesian, cylindrical, and spherical coordinates (compare with this table).

c) Calculate the gradient of f(r, θ, φ) = r`P`(cos(θ)), using x2−1
` P ′`(x) = xP`(x)−P`−1(x),

d) the curl of A(x, y, z) = (ŷx−x̂y)/(x2+y2)n in Cartesian and cylindrical coordinates, and the

e) divergence of B(x, y, z) = (x̂x+ŷy+ẑz)/(x2+y2+z2)n in Cartesian and spherical coordinates.

f) Derive the formulas for d2f and d2A ·dl in terms of their partial derivatives to show that the
trivial 2nd derivatives ∇×∇f and ∇ ·∇×A are special cases of d2 = 0.

2. Potential theory—the Fundamental Theorem of Differentials (FTD) d
∫
r ω+

∫
r dω = ω implies

that if dω = 0, then the potential α ≡
∫
r ω ≡

[∫ r
r′=0 ωrΩ(r′,Ω)dr′

]
dΩ (integrated along radial coor-

dinate lines) is its antiderivative: dα = ω. We will use this formula to derive the antiderivative of
the following special vector fields, generalizing the Fundamental Theorem of Calculus (FTC):

a) Show that if ∇×E = 0 (ie. E is irrotational), then E = −∇V (ie. E is conservative), with
the potential function V (r) = −

∫
r E ·dl+C, where C is any constant. Show that for a radial path

in spherical coordinates, this reduces to V = −r ·
∫ 1

0 E(λr)dλ.

b) Show that if ∇ ·B = 0 (ie. B is incompressible), then B = ∇ ×A (ie. B is solenoidal),
with the potential function A · dl =

∫
r B · da + dχ, where the ‘constant of integration’ dχ is the

differential of any scalar field. Show that for a radial path in spherical coordinates, this reduces to
A = −r ×

∫ 1
0 λB(λr)dλ.

c) [bonus: Show that since the differential of any density field ρ(r)dτ is zero, it can be written as
the exact differential ρ = ∇·(B+∇×A) of some flux field B(r)·da, and any constant of integration
(gauge) A(r) · dl. Derive the formula for B for a radial path in spherical coordinates.]

3. Stokes’ theorems–the FTD also generalizes the FTC, integrating the derivative of a field over
a region out to the boundary, resulting in an integral of the original field on the boundary.
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a) Integrate S
∫
∇×v·da where v = x̂x2+ŷ 2yz+ẑ xy, and S

is the parallelogram in the figure to the right. Integrate ∂S
∮
v·dl

along the boundary ∂S of S to verify Stokes’ theorem.

b) Verify Stokes’ theorem with the function in #1d) on the
disk ρ < R, z = 0 in the xy-plane centered at the origin.

c) Verify Gauss’ theorem with the function in #1e) inside the
sphere r < R of radius R centered at the origin.
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https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates
https://en.wikipedia.org/wiki/Legendre_polynomials#Recurrence_relations

