University of Kentucky, Physics 306 Homework #4, Rev. B, due Wednesday, 2024-02-07

1. The **Pauli matrices**, defined as $\sigma_x \equiv \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y \equiv \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z \equiv \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, describe quantum mechanical spin $\frac{1}{2}$ particles in a space with two basis vectors representing spin up and down.

a) Show that $\sigma_j \sigma_k = \delta_{jk} I + i \varepsilon_{jk\ell} \sigma_\ell$. What is the triple product $\sigma_x \sigma_y \sigma_z$? Thus σ_j acts like the basis vectors $\hat{x}, \hat{y}, \hat{z}$, and encode the structure of the dot and cross products just as 1, *i* do in the complex plane. What are the inverses of σ_k ?

[bonus: Show that product of *Dirac matrices* is $\gamma^{\mu}\gamma^{\nu} = g^{\mu\nu}I + i\sigma^{\mu\nu}$ and calculate the components $g^{\mu\nu}$ and the matrices $\sigma^{\mu\nu}$. They encode the structure of spacetime in special relativity.]

b) Show that $(I, \sigma_x, \sigma_y, \sigma_z)$ is a basis of the generalized vector space of complex 2×2 matrices: they are independent and any matrix can be written as the linear combination $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} =$ $IA_0 + \sigma_x A_x + \sigma_y A_y + \sigma_z A_z$ by solving for A_0, A_x, A_y, A_z .

What are the original basis matrices $P_{1,2}$ and σ_{\pm} , such that $A = P_1 a + \sigma_+ b + \sigma_- c + P_2 d$?

c) Verify that the transformation matrices $U_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ and $U_y = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$ are unitary, $U_x^{\dagger}U_x = U_y^{\dagger}U_y = I$, so that $U_x^{-1} = U_x^{\dagger}$ and $U_y^{-1} = U_y^{\dagger}$.

d) Verify the eigenequations $\sigma_x U_x = U_x \sigma_z$ and $\sigma_y U_y = U_y \sigma_z$. Calculate the similarity transform $U_x \sigma_k U_x^{-1}$ of each of the Pauli matrices $\sigma_k = \sigma_x, \sigma_y, \sigma_z$. For i, j=x, y, z, find the matrices U_{ij} that transform σ_i into $\sigma_j = U_{ij} \sigma_i U_{ij}^{-1}$. by rearranging the eigenequations above. In these equations, $_{i,j}$ are not component indices, but label (distinguish) different U matrices.

e) The trace of a matrix is the sum of its diagonal elements: $trA = A_{ii}$. Calculate tr(0) (the zero matrix) and tr(σ_i). [bonus: Show that tr(ABC) = tr(BCA) = tr(CAB) but not necessarily tr(ABC) = tr(CBA)] Use this to show that if $A' = UAU^{\dagger}$, then tr(A') = tr(A), i.e. the trace, or 'perimeter', of A is invariant.

f) The *determinant* of a matrix is the fully antisymmetric product of one element in each row or column: $\det A = \varepsilon_{ijk} A_{1i} A_{2j} A_{3k} = \varepsilon_{ijk} A_{i1} A_{j2} A_{k3}$, which has the properties $\det(A^{\dagger}) = \det(A)^*$ and $\det(AB) = \det(A)\det(B)$. Calculate $\det(I)$ and $\det(\sigma_i)$. Show that if $U^{\dagger}U = I$ then $|\det(U)| = 1$, and if $A' = UAU^{\dagger}$, then det(A') = det(A), i.e. the determinant, or 'volume', of A is invariant.

2. Rotations of the vector $\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix}$ are generated by the matrix $M = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, which represents a 90° CCW rotation—just as complex rotations $e^{i\phi}$ are generated by *i*, where $i^2 = -1$.

a) Show that Mv rotates v by 90° CCW, and that $M^2 = -I$.

b) Show that $R = e^{M\phi} = I\cos\phi + M\sin\phi$ and calculate the components of R. Show that $M^T = -M$ (the generator is asymmetric) and thus $R^T R = I$ (verify it), just like $(e^{i\phi})^* (e^{i\phi}) = 1$. Show that $dR = MRd\phi$, just like $de^{i\phi} = ie^{i\phi}d\phi$ in H02#1d.

c) The cross product \times generates rotation in 3d. Calculate the matrices $\mathbf{M} = (M_x, M_y, M_z)$, where $\hat{\boldsymbol{x}} \times \boldsymbol{v} = M_x \boldsymbol{v}$, etc. Show that the components of M_ℓ are $(M_\ell)_{jk} = \varepsilon_{kj\ell}$ and that $M_\ell^2 = -P_{\perp\ell}$,

where $P_{\perp \ell}$ projects perpendicular to $\hat{\boldsymbol{e}}_{\ell}$. Thus the general matrix for a CCW rotation of angle vabout the $\hat{\boldsymbol{v}}$ -axis is $R_{\boldsymbol{v}} = e^{\boldsymbol{M}\cdot\boldsymbol{v}} = P_{\perp}\cos v + \boldsymbol{M}\cdot\hat{\boldsymbol{v}}\sin v + P_{\parallel} = I\cos v + \boldsymbol{M}\cdot\hat{\boldsymbol{v}}\sin v + \hat{\boldsymbol{v}}\hat{\boldsymbol{v}}^{T}(1-\cos v)$, *Rodrigues' formula*. The third term preserves the projection along the axis of rotation $\hat{\boldsymbol{v}}$. Verify this formula for the familiar case $\vec{\boldsymbol{v}} = \hat{\boldsymbol{z}}\phi$.

d) [bonus: The Pauli matrices also generate rotation. Calculate $e^{-i\sigma_x\phi}$, $e^{-i\sigma_y\phi}$, $e^{-i\sigma_z\phi}$. Which transformation corresponds to R and the complex rotation $e^{i\phi}$?]

[bonus: 3. Minkowski space. We will derive the Lorentz transformations using the Lorentz metric, which encodes Einstein's principle of special relativity that the speed of light c is constant in any reference frame.

a) Show that the principle of relativity can be written as $\mathbf{x}^2 = \mathbf{x} \cdot \mathbf{x} = \mathbf{x}^T g\mathbf{x} = 0$ for the spacetime vector $\mathbf{x} = (ct \ x)^T$ with components representing the distance x = ct traveled by a photon in time t, where the matrix $g = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ is called the *Minkowski metric*. In three-dimensional space, $\mathbf{x} = (ct \ x \ y \ z)^T$ is a 4-vector, and the metric becomes a 4×4 matrix g = diag(-1, 1, 1, 1).

b) Momentum and energy can also be combined into the space-time vector $\boldsymbol{p} = (E/c p)^T$. Show that invariance of the dot product $\boldsymbol{p}^T g \boldsymbol{p} = -(mc)^2$ leads to the formula $E^2 = (pc)^2 + (mc^2)^2$, which reduces to Einstein's equation $E = mc^2$ when p = 0.

c) Normal rotations R keep the length of vector constant by preserving the Euclidean metric I: $R^T IR = I$. Likewise, Lorentz transformations Λ preserve the Minkowski metric: $\Lambda^T g \Lambda = g$. For a small 'rotation' $\Lambda = I + Gd\alpha$ generated by G, show that $G^T g + gG = 0$. Show that $G = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ satisfies this relation to first order in $d\alpha$. Note the difference between G and M!

d) Show that $G^2 = I$ and therefore $\Lambda = e^{G\alpha} = I \cosh \alpha + G \sinh \alpha = \gamma \begin{pmatrix} 1 & \beta \\ \beta & 1 \end{pmatrix}$, where $\beta = \tanh \alpha = v/c$ and $\gamma = \cosh \alpha = (1 - \beta^2)^{-1/2}$. Thus the Lorentz transformations $\mathbf{x}' = \Lambda \mathbf{x}$ are $t' = \gamma(t + vx/c^2)$ and $x' = \gamma(x + vt)$, which encode all of the features of special relativity. Verify that $\Lambda^T g \Lambda = g$ and plot the rotated basis vectors. Calculate the relativistic addition rule for velocities β_1 and β_2 from $\Lambda = \Lambda_2 \Lambda_1$.

e) The Dirac matrices γ^{μ} generate Lorentz rotations. Calculate $e^{-i\gamma_{\mu}v^{\mu}}$.]