
University of Kentucky, Physics 306
Homework #5, Rev. B, due Wednesday, 2024-02-14

1. Stretches. In analogy with the polar decomposition w = x + iy = ρeiφ of complex numbers,
any matrix A can be decomposed A = RS into a stretch S and a rotation R, which are the building
blocks of all linear operators. This problem set explores the structure of stretches.

a) For any eigenvalue problem M~vi = ~viλi, augment these n equations to obtain MV = VW ,
where W = diag(λ1, λ2, . . .), and thus show M = VWV −1 and W = V −1MV . This is the similarity
transform to the eigenbasis of M , in which the operator’s matrix is diagonal, and its inverse.

b) Diagonalize σx and σy by calculating their eigenbasis Ux,y = (~v1|~v2) of H04#1c to justify the
similarity transforms σxUx = Uxσz of H04#1d. Thus, σx,y are matrices of the same operator σz in
different bases. Calculate the eigenvalues and eigenvectors of σz, which is already diagonal.

c) Calculate the eigenvalues and eigenvectors of the projections P+ =
(

1 0
0 0

)
and P− =

(
0 0
0 1

)
of H04#1b. [bonus: show that projections, P 2 = P , can only have eigenvalues of 0 or 1.]

d) Calculate all eigenvalues and eigenvectors of the ladder operators σ± = (σx±iσy)/2 of H04#1b
to show that they are not diagonalizable. Such matrices with less eigevectors than eigenvalues are
called defective (see H08#2). Show that they are also nilpotent: σn± = 0 for some value n.

e) [bonus: A symmetric matrix S is guaranteed to have a complete set of eigenvectors V =
(~v1, ~v2, . . .) and corresponding eigenvalues λ1, λ2, . . ., such that S~vi = ~viλi with the following
special properties: show that i) the eigenvalues of S must be real: λ∗ = λ, and that ii) two
eigenvectors ~vi, ~vj of S with distinct eigenvalues λi 6= λj must be orthogonal: ~vi ·~vj = 0. Thus the
matrix of eigenvectors is unitary: V †V = I, so that S = VWV † and W = V †SV . Interpret these
similarity transforms geometrically.]

f) In addition to symmetric matrices, complex normal matrics, N †N = NN † (see H08#1),
also have an othogonal eigenbasis but only have real eigenvalues if they are Hermitian, H† = H.

Calculate the eigenvalues and eigenvectors of Mz =
(

0 −1
1 0

)
Do they look familiar? Show that

Mz = VWV † = 1
2

(
1 1
i −i

)(
−i 0
0 i

)(
1 −i
1 i

)
and eMzφ = V eWφV † = 1

2

(
1 1
i −i

)(
e−iφ 0

0 eiφ

)(
1 −i
1 i

)
.

Multiply this out to verify H04#2b. This is an example of the normal matrix analogy, which relates
matrices and complex numbers. Hermitian matrices have real eigenvalues while anti-Hermitian
matrices have zeros on the diagonal and imaginary eigenvalues. The exponential of a Hermitian
matrix is positive definite and has real positive eigenvalues, while the exponential of an anti-
Hermitian matrix is unitary with unit modulus eigenvalues and therefore determinant.

2. [bonus: We saw in H04#1 that the trace and determinant are matrix invariants under similarity
transformation. In general, an n× n matrix has n independent invariants, including the trace and
determinant.

a) Show that the characteristic equation |A − λI| = λn + an−1λ
n−1 + . . . + a1λ + a0 = 0,

substituting λ→ A in the second equality, is invariant under similarity transforms. Thus A has n
independent invariants: either a0 . . . an−1 of this equation or its n eigenvalue roots. The first and
last coefficients an−1 and a0 are tr(A) and det(A), respectively, while the others are k-dimensional
‘perimeters’, for example, surface area, of the transformation.
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https://en.wikipedia.org/wiki/Polar_decomposition#Matrix_polar_decomposition
https://en.wikipedia.org/wiki/Normal_matrix#Normal_matrix_analogy


b) Prove the Cayley-Hamilton Theorem, that any matrix A satisfies its own characteristic equa-
tion, for the case of diagonal matrices. The full theorem follows from the invariance of the charac-
teristic equation. Show that A−1 = −(An−1 + an−1A

n−2 + . . .+ a1I)/a0.]
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https://www.cuemath.com/algebra/cayley-hamilton-theorem/

