
University of Kentucky, Physics 306
Homework #11, Rev. A, due Wednesday, 2024-04-03

0. Potential theory—[bonus: the Fundamental Theorem of Differentials (FTD) d
∫
r ω+

∫
r dω = ω

implies that if dω = 0, then the potential α ≡
∫
r ω ≡

[∫ r
r′=0 ωrΩ(r′,Ω)dr′

]
dΩ, integrated along radial

coordinate lines, is its antiderivative: dα = ω. We use this formula to derive the antiderivative of the
following special vector fields, generalizing the Fundamental Theorem of Calculus (FTC i).

a) Show that if ∇×E = 0 (ie. E is irrotational), then E = −∇V (ie. E is conservative), with
the potential function V (r) = −

∫
rE ·dl+C, where C is any constant. Show that for a radial path

in spherical coordinates, this reduces to V = −r ·
∫ 1

0 E(λr)dλ. Confirm E = −∇V .

b) Show that if ∇ ·B = 0 (ie. B is incompressible), then B = ∇ ×A (ie. B is solenoidal),
with the potential function A · dl =

∫
rB · da + dχ, where the ‘constant of integration’ dχ is the

differential (gradient) of any scalar field. Show that for a radial path in spherical coordinates, this
reduces to A = −r ×

∫ 1
0 B(λr)λ dλ. Take the curl to confirm B = ∇×A.

c) Show that since the differential of any density field ρ(r)dτ is zero, it can be written as the
exact differential ρ = ∇ · (D +∇× h) of some flux field D(r) · da, and a ‘constant of integration’
gauge h(r) · dl. Derive the formula for D for a radial path in spherical coordinates.]

1. Stokes’ theorems—the FTD also generalizes the FTC (ii), integrating the derivative of a field
over a region out to the boundary, resulting in an integral of the original field on the boundary.
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a) Integrate S
∫
∇×v·da where v = x̂x2+ŷ 2yz+ẑ xy, and S

is the parallelogram in the figure to the right. Integrate ∂S
∮
v·dl

along the boundary ∂S of S to verify Stokes’ theorem.

b) Verify Stokes’ theorem with the function in H10#1d) on the
disk ρ < R, z = 0 in the xy-plane centered at the origin.

c) Verify Gauss’ theorem with the function in H10#1e) inside
the sphere r < R of radius R centered at the origin.

2. Electrostatic and Magnetostatic integrals

a) Integrate i) V (r) = 1
4πε0

∮
σda′r , where r̂r = r = r − r′, and ii) E(r) = 1

4πε0

∮
σda′ r̂
r 2 over r′

on a sphere of radius R to calculate the electric potential V , field E of a spherical shell of uniform
surface charge density σ. Verify that iii) V = −∇E and that you get the same iv) field from Gauss’
law ΦD =

∮
∂V ε0E · da =

∫
V ρdτ = Q and v) potential V (r) = −

∫ r
0 E · d` from the FTVC.

b) Integrate i) the magnetic field B(r) = µ0
4π

∮
Id`′× r̂

r 2 of a infinite wire on the z-axis and ii) show

that you get the same field from Ampère’s law/Stokes’ theorem EH =
∮
∂S H · d` =

∫
S J · da = I,

where B = µ0H. Show that iii) B = ∇×A, the curl of the vector potential A = −µ0I
2π ẑ ln ρ, and

that iv) H = −∇U , the gradient of the scalar potential U = − I
2πφ with a discontinuity of ∆U = I

at the branch cut φ = ±π, because H is not conservative—it has curl along the z-axis.

c) Expand the formula for the magnetic field B(r) =
∮ µ0

4π
Id`′× r̂

r 2 of a ring of radius R centered in
the xy-plane, and integrate B(z) on the z-axis. [bonus: integrate the field everywhere using elliptic
functions, per www.grant-trebbin.com/2012/04/off-axis-magnetic-field-of-circular.html]
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