University of Kentucky, Physics 306 Homework #11, Rev. A, due Wednesday, 2024-04-03

0. Potential theory—[bonus: the Fundamental Theorem of Differentials (FTD) $d \int_r \omega + \int_r d\omega = \omega$ implies that if $d\omega = 0$, then the potential $\alpha \equiv \int_r \omega \equiv \left[\int_{r'=0}^r \omega_{r\Omega}(r', \Omega) dr'\right] d\Omega$, integrated along radial coordinate lines, is its antiderivative: $d\alpha = \omega$. We use this formula to derive the antiderivative of the following special vector fields, generalizing the Fundamental Theorem of Calculus (FTC i).

a) Show that if $\nabla \times \boldsymbol{E} = \boldsymbol{0}$ (ie. \boldsymbol{E} is *irrotational*), then $\boldsymbol{E} = -\nabla V$ (ie. \boldsymbol{E} is *conservative*), with the potential function $V(\boldsymbol{r}) = -\int_{\boldsymbol{r}} \boldsymbol{E} \cdot \boldsymbol{dl} + C$, where C is any constant. Show that for a radial path in spherical coordinates, this reduces to $\boldsymbol{V} = -\boldsymbol{r} \cdot \int_{0}^{1} \boldsymbol{E}(\lambda \boldsymbol{r}) d\lambda$. Confirm $\boldsymbol{E} = -\nabla V$.

b) Show that if $\nabla \cdot \boldsymbol{B} = 0$ (ie. \boldsymbol{B} is *incompressible*), then $\boldsymbol{B} = \nabla \times \boldsymbol{A}$ (ie. \boldsymbol{B} is *solenoidal*), with the potential function $\boldsymbol{A} \cdot \boldsymbol{dl} = \int_r \boldsymbol{B} \cdot \boldsymbol{da} + d\chi$, where the 'constant of integration' $d\chi$ is the differential (gradient) of any scalar field. Show that for a radial path in spherical coordinates, this reduces to $\boldsymbol{A} = -\boldsymbol{r} \times \int_0^1 \boldsymbol{B}(\lambda \boldsymbol{r}) \lambda d\lambda$. Take the curl to confirm $\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A}$.

c) Show that since the differential of any density field $\rho(\mathbf{r})d\tau$ is zero, it can be written as the exact differential $\rho = \nabla \cdot (\mathbf{D} + \nabla \times \mathbf{h})$ of some flux field $\mathbf{D}(\mathbf{r}) \cdot \mathbf{d}\mathbf{a}$, and a 'constant of integration' gauge $\mathbf{h}(\mathbf{r}) \cdot \mathbf{d}\mathbf{l}$. Derive the formula for \mathbf{D} for a radial path in spherical coordinates.]

1. Stokes' theorems—the FTD also generalizes the FTC (ii), integrating the derivative of a field over a region out to the boundary, resulting in an integral of the original field on the boundary.

a) Integrate $S \int \nabla \times v \cdot da$ where $v = \hat{x} x^2 + \hat{y} 2yz + \hat{z} xy$, and S is the parallelogram in the figure to the right. Integrate $\partial S \oint v \cdot dl$ along the boundary ∂S of S to verify Stokes' theorem.

b) Verify Stokes' theorem with the function in H10#1d) on the disk $\rho < R, z = 0$ in the *xy*-plane centered at the origin.

c) Verify Gauss' theorem with the function in H10#1e) inside the sphere r < R of radius R centered at the origin.

2. Electrostatic and Magnetostatic integrals

a) Integrate i) $V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \oint \frac{\sigma da'}{2}$, where $\hat{\mathbf{r}} = \mathbf{r} = \mathbf{r} - \mathbf{r}'$, and ii) $\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \oint \frac{\sigma da'\hat{\mathbf{\lambda}}}{2^2}$ over \mathbf{r}' on a sphere of radius R to calculate the electric potential V, field \mathbf{E} of a spherical shell of uniform surface charge density σ . Verify that iii) $V = -\nabla \mathbf{E}$ and that you get the same iv) field from Gauss' law $\Phi_D = \oint_{\partial V} \epsilon_0 \mathbf{E} \cdot d\mathbf{a} = \int_V \rho d\tau = Q$ and v) potential $\mathbf{V}(\mathbf{r}) = -\int_0^T \mathbf{E} \cdot d\boldsymbol{\ell}$ from the FTVC.

b) Integrate i) the magnetic field $\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \oint \frac{Id\ell' \times \hat{\boldsymbol{x}}}{\boldsymbol{z}^2}$ of a infinite wire on the z-axis and ii) show that you get the same field from Ampère's law/Stokes' theorem $\mathcal{E}_H = \oint_{\partial S} \boldsymbol{H} \cdot d\boldsymbol{\ell} = \int_S \boldsymbol{J} \cdot d\boldsymbol{a} = I$, where $\boldsymbol{B} = \mu_0 \boldsymbol{H}$. Show that iii) $\boldsymbol{B} = \nabla \times \boldsymbol{A}$, the curl of the vector potential $\boldsymbol{A} = -\frac{\mu_0 I}{2\pi} \hat{\boldsymbol{z}} \ln \rho$, and that iv) $\boldsymbol{H} = -\nabla U$, the gradient of the scalar potential $U = -\frac{I}{2\pi} \phi$ with a discontinuity of $\Delta U = I$ at the branch cut $\phi = \pm \pi$, because \boldsymbol{H} is not conservative—it has curl along the z-axis.

c) Expand the formula for the magnetic field $B(r) = \oint \frac{\mu_0}{4\pi} \frac{Id\ell' \times \hat{\boldsymbol{\lambda}}}{\boldsymbol{\lambda}^2}$ of a ring of radius R centered in the xy-plane, and integrate B(z) on the z-axis. [bonus: integrate the field everywhere using elliptic functions, per www.grant-trebbin.com/2012/04/off-axis-magnetic-field-of-circular.html]

