University of Kentucky, Physics 306
Homework #13, Rev. A, due Wednesday, 2024-04-17

1. Drumhead waves are described by the PDE (v%g—; —V23)n(p, ¢, t) = 0, where the wave velocity

v = y/7/o depends on the surface tension v and the mass density o of the drumhead.

a) Use e~ ™! = —jwe ™! to obtain the Helmholtz equation (V2 + k?)n = 0 by replacing 0
with its eigenvalue. Determine the dispersion relation between spatial k and temporal w frequen-
cies.

b) Expand Vin in cylindrical coordinates and show the radial part has the equivalent forms
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c) Use the eigenvalue equation 0y®,,(¢) = im ®,,(¢) to factor out the ¢ dependence in the
Laplacian and obtain the Bessel equation. Plot the first three Bessel functions Jo(z), Ji(z), and
Jo(x), where z = kp. Find the lowest-order Taylor approximation of each function as z — 0 and
the asymptotic approximation as x — oco. The energy, which is proportional to the amplitude n
squared, spreads out as the circular wavefront expands.

d) Use the boundary conditions 1(p,0) = n(p, 27) and 1 4(p, 0) = 1,4(p, 27) to show that m must
be an integer. Use the linearity of dy on ®,,(¢) £ ®_,,(¢) to show that cos(me¢) and sin(me¢) are
also eigenfunctions of 03) (but not d5—why?) and determine the eigenvalues. Apply the boundary
condition n(a, ) = 0 to find the possible values of k, in terms of x,,, the n'" zero of the Bessel
function J,,(x). For each combination of m,n plot the node lines where 7, (p, ) = 0 and find the
vibrational frequency wy,, of this mode.

e) [bonus: how could this solution be modified to solve the three-dimensional wave equation
(02 /v? — V) ¥(p, ¢, 2,t) = 0 with boundary conditions ¥(a, ¢, z,t) = ¥(p, ¢, +b,t) = 07]

2. Harmonics are the common multipole angular solutions of any PDE involving the Laplacian.

a) In the long wavelenth limit & — 0, the Helmholtz equation becomes the Laplace equation
Vin = 0. The eignfunctions of 0y are still the cylindrical harmonics ®p,(¢) = e™? but for the
radial solution, limg_,q J(kp) transforms each Bessel function to its lowest order Taylor approxi-
mation. Put the ansatz R, (p) = p®, into Laplace’s equation and solve for a to find two independent
solutions R,,(p). One which is finite at the origin p = 0 and the other as p — oo. Show that for
m = 0, R(p) = In(p) is a second independent solution. Express the planar harmonics R,,(p)e'™?
which are finite at origin in the form (z + iy)™ = A, + iB,, and expand A,,, B, as polynomial
solutions to Laplace’s equation. Explicitly verify these solutions up to m = 3.

b) Expand V2V (r,0, ¢) in spherical coordinates and show the radial part has the forms
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c) Factor out the ¢-dependence as in #1c) and identify the #-operator L? = ;—j(l —:L“Q)% +-m2

1—z2>
where x = cos @ [distinct from the Cartesian coordinate x and from x = kp of #2c)!], to obtain the

general Legendre equation, for polar waves. Restriction to m = 0 yields the Legendre polynomials
of HO7T#2c. Continuity at the poles § = 0, 7 requires that £ = |m|, |m+1|,|m+2|,...,00. Look up
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all ten polar eigenvectors PlJm| () up to £ = 3, show that two of them are solutions. The combined
spherical harmonics Yy, = (—1)",/ (25;1) Eg;g:ﬂm (cos §)e™™® are normalized eigenfunctions of the

operator L2(0,$) with eigenvalues A = /(¢ + 1). They represent the atomic s,p,d, f orbitals for
£=0,1,2,3. Draw the node lines of each of these £, m-modes on a sphere.

e) Write V2 using the third form of part 3b) and L2 Factor out the angular dependence and
solve the radial Laplace equation for the two eigenfunctions R;(r) for each £ as in part a) to obtain
the solid harmonics R*(r) and I]"(r). Expand R}*(r) in Cartesian coordinates, factoring out the
planar harmonic in each. These multinomials in x, ¥, z are used to label the sub-orbitals.

f) [bonus: Solve the Laplace boundary value problem in all space with a point flux source at
r' = (r',¢,¢’) to obtain the potential V(r) = >, R (v')I*(r) if r < 1" or >, R (r")I(r)
if r > 7", Qun = [dg' R (v') is the interior [or I**(v') for the exterior] multipole moment of the
charge distribution, and I}"(r) [or R*(r)] is its corresponding potential. Compare with the point

£
potential Green’s function V(r) = ﬁ to obtain the addition theorem % =300 %Pg(cos v),
>

where v is the angle between r and ' and Py(cos~y) = % ﬁz:% Y (0, ¢ )Yim(0,¢), and r<, 7>

are the lesser and greater values of r, 7/, respectively.]
g) [bonus: Show that the spherical solution of the Helmholtz equation (V2 + k2)j; (k7)Y (0, ¢)
is similar to cylindrical with m — ¢+ %, and thus the solutions are the spherical Bessel functions

Jilkr) = \/ 55 Jes12(kr). The same principle holds for all wave equations in different dimensions.
Calculate and illustrate the modes of a spherical wave confined to r < a a la #2d).]
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