
University of Kentucky, Physics 306
Homework #14, Rev. A, Bonus

1. The Relaxation method, largely due to R. V. Southwell, is a straightforward method of
solving PDEs based on the mean value property of the Laplacian. It is applicable to a wide variety
of problems, not only Laplace’s equation. We will use it to calculate the potential distribution
within a square with two adjacent edges at 100 V, one at 0 V and one at 50 V.

a) Draw a square grid of 36 points: 20 on the edges of the square, and 16 in the interior.

b) Fill in the boundary potentials on all edges, and initial estimates of the potentials at the
interior points on your grid. This is your first approximation.

c) Correct your first approximation as follows: replace the value of each interior point with the
average of its four adjacent squares. Explain why this procedure ‘relaxes’ the potential closer to
∇2V = 0 (see #2b).

d) Repeat part c) until none of the changes are greater than 0.5 V, and sketch the equipotentials
for 20 V, 40 V, 60 V, and 80 V. You may want to solve this problem on a computer, using Excel,
Matlab, or Octave (open source program similar to Matlab).

How would one extend this method to solve Neumann (flux) boundary conditions?

2. Finite Differences Method. Re-solve problem #1 noniteratively as outlined below:

a) Given the discrete approximation of a function fi = f(xi) evaluated at regular intervals
xi = x0 + i∆x, show that f ′(xi) ≈ (fi+1− fi)/∆x ≈ (fi− fi−1)/∆x are two approximations of the
first derivative. What is their average?

b) Derive a formula for the discrete second derivative using the two first derivatives of part a),
and extend it to a discrete 2-dimensional Laplacian.

c) Turn Laplace’s equation into a matrix equation by treating the function V (x) on interior
points of the grid in problem #1 as a 16-component vector V = [V11, V12, V13, V14, V21, . . . , V44].
Use part b) to represent ∇2V as a 16×16 matrix K multiplied by V . Note that the Laplacian can
be approximated by a matrix because it is a linear operator. Each row should represent Laplace’s
equation evaluated at one interior point. There is no place in KV for the fixed boundary potentials
V0n, V5n, Vm0, and Vm5 for m,n = 1, 2, 3, 4, so put these values in a fixed vector B, such that the
matrix equation KV + B = 0 represents the full boundary value problem.

d) Solve KV = −B for the potential V at each point and compare your result with #1. DO
NOT do this by hand! Try using the online applet http://www.bluebit.gr/matrix-calculator or one
of the software packages Octave, Matlab, Maple, or Mathematica.
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3. Finite Element Method. In this problem we will investigate one of the most common meth-
ods of solving partial differential equations numerically (especially involving the Laplacian). This
method is very flexible and can be used to solve PDEs on irregularly shaped domains (like cars, or
electrodes for your awesome new experiment). This problem is self-contained, but for extra details
or hints, refer to the article http://wikipedia.org/wiki/Finite element.

a) Show that ∫
R

(∇2u)vdτ =

∮
∂R

(∇u)v · da−
∫
R
∇u · ∇vdτ. (1)

Assuming that v = 0 on the boundary, this means that the equation ∇2u = f can be written

−
∫
R
∇u · ∇vdτ =

∫
R
fvdτ, (2)

which is now a first order integral equation which must hold true for any test function v(r). This
is called the weak form of Laplace’s equation.

b) In a one-dimensional space, Eq. 2 can be discretized by choosing appropriate “basis functions”
for v(r). The ith tent function is defined as vi(x) = (1− |x− i|) θ(1− |x− i|), where θ(x) = {1 if
x > 0, and 0 if x < 0} is the Heaviside step function and i = 1, 2, 3, 4. Plot each of these functions
on the same graph.

c) Sketch the function f(x) = 2v1(x) + 4v2(x) + 3v3(x) + 1v4(x). In the same way, any function
defined on 0 < x < 5 can be approximated by a linear combination of these basis functions
f(x) ≈

∑4
i=1 fivi(x), where fi = f(i).

d) Convert Eq. 2 into four linear equations (i = 1, 2, 3, 4) by substituting v(x)→ vi(x) and ap-
proximating u(x) =

∑
j ujvj(x) and f(x) =

∑
j fjvj(x). Combine these equations into a single ma-

trix equation −Lu = Mf , where u = [u1, u2, u3, u4]
T , v = [v1, v2, v3, v4]

T , Mij =
∫∞
−∞ vi(x)vj(x)dx

and Lij =
∫∞
−∞∇vi(x) · ∇vj(x)dx. Note that ∇ = d/dx in one dimension. Perform the integrals of

each component of L and M to obtain numerical matrices.

e) Use part d) to solve the boundary value problem ∇2u = 3 on the region 0 < x < 5, with
boundary conditions u(0) = 0 and u(5) = 0, by solving the above matrix equation for ui. Solve the
boundary value problem analytically and compare with the finite element result.

Describe how this method could apply to higher dimensions. Hint: Define the 2-dimensional tent
function vij(x, y) = vi(x) vj(y), and show how it can be used as above. The matrices get very large
for 2- or 3-dimensional problems, but there are packages like FlexPDE (http://www.pdesolutions.com,
free student version) and COMSOL (http://comsol.com) which do all the bookkeeping, and imple-
ment this method for arbitrary geometries and complex partial differential equations from a GUI
interface.
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