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* The utility of vectors comes from their geometric interpretation, which describes many
concepts in physics; however the power of vectors comes from their algebraic structure, ﬁ x ¢ o 0))
which allows for analytic calculations and applications beyond spatial directions. v < \

o Rene Descartes pioneered this dichotomy with the introduction of analytic geometry % Zé
over 400 years ago in 16149, by describing points in Cartesian coordinates.

o We have already seen the power in the geometric/algebraic connections of
addition/multiplication/conjugation of points in the complex plane to describe
veflection/stretches/rotation. This is a good example of an algebraic vector space. )

o This lecture will treat the specific structure associated with plain vector spaces,
which we later augment with other multilinear structure:

1) dot/cross/triple products, 2) linear operators, 3) dual vectors, etc.

e In Physics I/11, vectors introduced geometrically as arvows with lengths, directed in space.

o The vector arvow has a tarl and a head a certain displacement from the tail, which is
what it represents--it is the same vector no matter where it is positioned in space.

o It has a magnitude in some units (often but not always involving length) and a physical
direction representing the displacement in position d7, velocity (or momentum p = mv), \ \ &/
acceleration (or force F =md, an example involving direction without displacement). v

o All of these are called polar vectors because they imply force or movement in direction of ,%/7
the arrow, which is the opposite direction reflected out from (but not along) a mirvor.

o When we talk about the cross product, we will discover axial vectors, which represent
votation about an axis, or the area perpendicular to a normal, which has the opposite
propevties under reflection, and should not be added with polar vectors (parity violation)

* There are only two operations we can do with pure vectors:

1) Add two vectors by combining the two head-to-tail to get the total displacement
Combining them in either way yields the same result: the far corner of a parallelogram.
2) Scaling a vector by 1 (unchanged), -1 (reflected), 2 (doubled) 1/2 (halved),
O: the unique vector with no length and thus arbitrary direction, or any real number.

e Moving a vector around is not an operation because it does not change it

o This distinguishes vectors from pornts, which Descartes originally described analytically:
Points have a fixed location, while vectors can be moved anywhere without changing.

o Some operations between points and vectors make sense:

= The sum of a point and vector displaces the point from P to Q =P + ¥

* The difference between two points ¥ = Q — P is the displacement between them

* The point R=P+av=1—-a)P+aQ =aQ +BP, a+p =1, a fraction a of the distance
from P to Q. This universal affine combination defines the structure of points in an

affine space, which we will explore in optional HO2#3.

o If we represent points by the vectors from a common origin (tail) to the points (head),
then all operations on points/vectors are reduced to the corresponding vector operations.
These ave called position vectors, and are drawn simply as points to reduce clutter.

o There are key differences, though, especially in curvilinear coordinate systems.

 The analog of affine combinations of points is the universal linear combination of vectors
¥ = da + bB + &y + -, which encompases both addition and scalar multiplication.

o Vectors obey all algebraic properties of addition and multiplication like distribution
except the product Uv is not defined without extra structure

o These rules guarantee that any algebraic formula involving vectors can be reduced to an
affine combination of distinct vectors b, ¢, ...

o The set of all linear combinations for coefficients a,B,y € R is a linear [vector] space.
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affine combination of distinct vectors d,b,¢, ...
o The set of all linear combinations for coefficients a,B,y € R is a linear [vector] space.
It is closed--it includes all possible linear combinations of vectors in the space.
* A vector space can be extended or restricted, while still being closed
o Any set of linear combinations of 1,2,3 or more vectors for all coefficients is closed.
o For example, the line of points (position vectors) through the origin V; = {3, = daja € R }
and the plane V, = {172 =BB+&y|BYE ]Rz} spanned by vectors b and ¢
are subspaces of all 3d vectors (subsets which are vector spaces in their own right).

o All subspaces have the 0 vector in common. If that is the only one, then one can form a
divect sumV =V, @V, of the two spaces, from the unique sum of one vector in each
subspace, for example 3 =5, + 3, in V; = {daja € R} and V, = {Bﬁ +¢yIB,y € [R} respectively.

o Conversely, v, = da and B, = bf + &y are projections of ¥ into the complementary spaces
Vi and V. You need both spaces to determine the projection: from the head of 7, you
slide in the direction of @ till you land on the unigue vector B, = bB + &y €V,, or in the
directions of b and ¢ till you get to B, = da € V;. The sum of the projections is ¥ = Uy + ¥,.

o Projections are the shadow of a vector, with light shining in one direction onto another

o Projections are in inverse of Linear Combinations: LC builds up, while P decomposes

o We need the notion of a dot product to define orthogonality (perpendicular) before we
can talk about the parallel/perpendicular projection along a single vector a.

« Linear combinations projecting v to the unique sum ¥ = da + bf + &y + - with coefficients

14
o The vectors b are called called a basis of the vector space and

a
V= (ﬁ) and fixed vectors b= (3 b ¢), treat geometric vectors algebraically a la Descartes.

the coefficients v are called the components of the vector ¥ with respect to the basis b.
o Components of position vectors are equal to the Cartesian coordinates of points,
but coordinates (ie. cylindrical or spherical) do not have to be linear like components do.
o Each vector is identified and manipulated algebraically as a tuple of real numbers v e R™.
o For unique existence of this correspondence, a basis has the two properties of projections:
1) It is independent. if ¥ = da + BB+¢y=0,thena==y=0.
2) It is complete or spans the space: any vector can be written ¥ = da + b + ¢y.

EXAMPFLES:
1) An example of a vector space, subspaces, basis, and components is Complex numbers
V ={z=x+iylx,y € R}, with explicit [inear combinations z = 1x + iy.

;i) Note that both are numbers!

o The two subspaces are the real V; = {1x|x € R} and imaginary V; = {iy|y € R} number lines.

o The basis isb=(1 i), and components of z are v = (

o The space of complex numbers is the direct sum (grid) of these two lines.
o A vector z = 1x + iy projects onto the vectors v; = 1x and v, = iy.

o The basis vectors have canonical components 1 = (é) and i = ((1))

o The only common vector is 0 =0 = 0+ 0.
2) A universal example is the space R? with the canonical basis {51 = ((1)) é, = (2)}
In case, the vectors are indistinguishable their components.
o This vector space is used for algebraic manipulation of any other 2-dimensional space.
3) The final isomorphic example is the set of arvows in the plane with basis arrows {%,3}.

o In all three cases, the components are: v = (;)

« The use of matrices collect the basis vector (column b) and compoents (row v) to one object

o | use the notation a to represent matrices, and ¥ for vectors; b is a matrix of vectors

[a\
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* The use of matrices collect the basis vector (column b) and compoents (row v) to one object

o | use the notation a to represent matrices, and v for vectors; b is a matrix of vectors

[e]

a
The contractionv=bv= (3 5 ¢) (ﬁ) = da + b + &y captures a ubiquitous patern of
Y

operations in linear algebra: 1) linear combinations, 2) dot products, 3) linear operators

= Always between a left row and a right column of the same length.

Matrix equations can be augmented with extra rm@@tb\e left or c@ the|right
\ a | a
v ¢

[e]

» Represents multiple equations with repetition: (5 w) = b w)= G 1B @

for both ¥ = da + bB + &y and W = 48 + be + &, with the basis repeated

[e]

Uy ay by cx\ [a
Augment vectors with components [ vy |=|ay by, ¢y | B ] to solve for a,B,y .

Vg a, b, c;J\V

= Or even solve for v and w at the same time!

[e]

Matrix multiplication is the matrix of all possible row-column contractions
We will learn more about matrices in each of the next few lectures

[e]

e Index notation: complementary for same pattern v = by v; = $3, byv; = byvy + byv, + bavs
o Summation is implied for repeated index i (sometimes called Einstein notation).
o It still works in complicated situations like 3d (cube) matrices with many contractions

o We will also learn wore about index notation in the next few lectures
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