
The utility of vectors comes from their geometric interpretation, which describes many 

concepts in physics; however the power of vectors comes from their algebraic structure, 

which allows for analytic calculations and applications beyond spatial directions.

Rene Descartes pioneered this dichotomy with the introduction of analytic geometry

over 400 years ago in 1619, by describing points in Cartesian coordinates.

○

We have already seen the power in the geometric/algebraic connections of 

addition/multiplication/conjugation of points in the complex plane to describe 

reflection/stretches/rotation.  This is a good example of an algebraic vector space.

○

This lecture will treat the specific structure associated with plain vector spaces,

which we later augment with other multilinear structure: 

1) dot/cross/triple products, 2) linear operators, 3) dual vectors, etc.

○

•

In Physics I/II, vectors introduced geometrically as arrows with lengths, directed in space.

The vector arrow has a tail and a head a certain displacement from the tail, which is 

what it represents--it is the same vector no matter where it is positioned in space.

○

It has a magnitude in some units (often but not always involving length) and a physical 

direction representing the displacement in position    , velocity (or momentum       ), 

acceleration (or force       , an example involving direction without displacement).

○

All of these are called polar vectors because they imply force or movement in direction of 

the arrow, which is the opposite direction reflected out from (but not along) a mirror.

○

When we talk about the cross product, we will discover axial vectors, which represent 

rotation about an axis, or the area perpendicular to a normal, which has the opposite 

properties under reflection, and should not be added with polar vectors (parity violation)

○

•

There are only two operations we can do with pure vectors:

Add two vectors by combining the two head-to-tail to get the total displacement

Combining them in either way yields the same result: the far corner of a parallelogram.

1)

Scaling a vector by 1 (unchanged), -1 (reflected), 2 (doubled) 1/2 (halved), 

0: the unique vector with no length and thus arbitrary direction, or any real number.

2)

•

Moving a vector around is not an operation because it does not change it

This distinguishes vectors from points, which Descartes originally described analytically:

Points have a fixed location, while vectors can be moved anywhere without changing.

○

Some operations between points and vectors make sense:

The sum of a point and vector displaces the point from  to       ▪

▪ The difference between two points       is the displacement between them

The point                              , a fraction  of the distance 

from  to  .  This universal affine combination defines the structure of points in an 

affine space, which we will explore in optional H02#3.

▪

○

If we represent points by the vectors from a common origin (tail) to the points (head), 

then all operations on points/vectors are reduced to the corresponding vector operations.

These are called position vectors, and are drawn simply as points to reduce clutter.

○

There are key differences, though, especially in curvilinear coordinate systems.○

•

• The analog of affine combinations of points is the universal linear combination of vectors

                 , which encompases both addition and scalar multiplication.

Vectors obey all algebraic properties of addition and multiplication like distribution

except the product      is not defined without extra structure

○

These rules guarantee that any algebraic formula involving vectors can be reduced to an 

affine combination of distinct vectors            

○

The set of all linear combinations for coefficients        is a linear [vector] space.  

It is closed--it includes all possible linear combinations of vectors in the space.

○
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These rules guarantee that any algebraic formula involving vectors can be reduced to an 

affine combination of distinct vectors            

The set of all linear combinations for coefficients        is a linear [vector] space.  

It is closed--it includes all possible linear combinations of vectors in the space.

○

A vector space can be extended or restricted, while still being closed

○ Any set of linear combinations of 1,2,3 or more vectors for all coefficients is closed.

○ For example, the line of points (position vectors) through the origin                  

  and the plane                        spanned by vectors    and   

are subspaces of all 3d vectors (subsets which are vector spaces in their own right).

○ All subspaces have the    vector in common.  If that is the only one, then one can form a 

direct sum        of the two spaces, from the unique sum of one vector in each 

subspace, for example           in             and                    respectively.

○ Conversely,        and             are projections of   into the complementary spaces

  and   .  You need both spaces to determine the projection:  from the head of   , you 

slide in the direction of   till you land on the unique vector                , or in the 

directions of    and   till you get to           .  The sum of the projections is           .

Projections are the shadow of a vector, with light shining in one direction onto another○

○ Projections are in inverse of Linear Combinations: LC builds up, while P decomposes

○ We need the notion of a dot product to define orthogonality (perpendicular) before we 

can talk about the parallel/perpendicular projection along a single vector   .

•

• Linear combinations projecting   to the unique sum                  with coefficients

   

 
 
 
 and fixed vectors               , treat geometric vectors algebraically à la Descartes.  

The vectors     are called called a basis of the vector space and 

the coefficients  are called the components of the vector   with respect to the basis     .

○

○ Components of position vectors are equal to the Cartesian coordinates of points,

but coordinates (ie. cylindrical or spherical) do not have to be linear like components do.

○ Each vector is identified and manipulated algebraically as a tuple of real numbers     .

○ For unique existence of this correspondence, a basis has the two properties of projections:

1) It is independent: if                    , then        .

2) It is complete or spans the space: any vector can be written                .

EXAMPLES:

1) An example of a vector space, subspaces, basis, and components is Complex numbers

                , with explicit linear combinations        .

○ The basis is          , and components of  are    
 
  . Note that both are numbers!

○ The two subspaces are the real            and imaginary            number lines.

○ The space of complex numbers is the direct sum (grid) of these two lines.

○ A vector        projects onto the vectors      and      .

○ The basis vectors have canonical components    
 
 
 and     

 
 .

○ The only common vector is           .

2) A universal example is the space   with the canonical basis       
 
 
       

 
 
  .

In case, the vectors are indistinguishable their components.  

○ This vector space is used for algebraic manipulation of any other 2-dimensional space.

The final isomorphic example is the set of arrows in the plane with basis arrows        .

In all three cases, the components are:    
 
  ○

3)

The use of matrices collect the basis vector (column     ) and compoents (row  ) to one object

○ I use the notation  to represent matrices, and   for vectors;     is a matrix of vectors

The contraction          

 
 
 
          captures a ubiquitous patern of 

•
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The use of matrices collect the basis vector (column     ) and compoents (row  ) to one object

○ I use the notation  to represent matrices, and   for vectors;     is a matrix of vectors

The contraction                    

 
 
 
              captures a ubiquitous patern of 

operations in linear algebra:  1) linear combinations, 2) dot products, 3) linear operators

▪ Always between a left row and a right column of the same length.

○

○ Matrix equations can be augmented with extra rows on the left or columns on the right

▪ Represents multiple equations with repetition:                             
  
  
  

 

for both                and                  , with the basis repeated

Augment vectors with components  
  
  
  
   

      
      
      

  

 
 
 
 to solve for      

▪ Or even solve for  and  at the same time!

○

○ Matrix multiplication is the matrix of all possible row-column contractions

○ We will learn more about matrices in each of the next few lectures

•

Index notation: complementary for same pattern                   
 
                        

Summation is implied for repeated index  (sometimes called Einstein notation).○

It still works in complicated situations like 3d (cube) matrices with many contractions○

We will also learn more about index notation in the next few lectures○

•
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