LOS5 Inner/Outer Products
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* The linear structure of LO4 entailed parallel lines, but NOT explicit angle/length
o Projections needed two complementary spaces: along and into
o Even %, 9, 2 had no dependence on unit length or perpendicularity (just implied).
o The dot product provides notions for all of these (unit vectors, orthogonal projections)
* Like vectors themselves, the dot product has geometric significance and analytic power
o Connection between these two aspects is again the linear structure of the dot product
o Definition: @-b = abcosy = ayb = aby = ayb, + ayby + a,b, = a"b = §;;a;b; ¢y, = cosy
Ay
and d = da = Ra, +Ya, + 2a, = () 2 (2;;) =®8a = &a; ; similarly for b; and y = 2(ab).
2
o Length of @ is a =Va-d and direction is the unit vector @ = d/a, since cos0°=1- d-d = a>
« Geowmetry: dot product is product of parallel projected lengths i-b = a\b = ab,.
o Either a; = acosy (@ onto b) or by = bcosy (b onto @), but not both onto some 7 (see below).
o The projected product ayb is not the projected length a; unless b =b is a unit vector.
o projection: PV = vy =Avy =AA-U thus Py =AA- (s an operator on vectors Py: v — ¥y.
i. Definition of projection: P2 = P because P =AA-(AA-=A@R-A)A-= AR =P
ii. Orthogonal projection: PT =P because PT = (aT) =ad-=P (see below)

The defining properties of the dot product relate the geometric — algebraic calculation:
1) scalar valued: (product of lengths), polar - polar, axial - axial wmirvor-invariant
2) symmetric (commutative): a-b = abcosy = bacos(—y) = b - d
3) bilinear (distributive): (d;a;) - (E}ﬁj) = (d‘i : B}) B; = & gij B, where g;; is the metric tensor.
This is a direct property of projections, head-to-tail addition, and similar triangles
o Example - law of cosines: the length® of ¢ =d—b is ¢ = a? —2d-b + b? = a® + b — 2ab cosy
In the complex plane, the vector is [c]?> = c*c = (a — b)*(a — b) = |a|? + |b|> — 2Re(a*h)
o An orthonormal basis @ = (%,9,2), where -2 =1, -9 =0, etc., forms a unit cube.
o Components are easy to calculate in this basis: v, =29, v,=9-9, v,=2-7.
This is trivial in @ = (8,9,2), but powerful for a rotated orthonormal basis.
o Dot product also simplifies: ©-w = (J?vx + 37173,) . (fwx + ywy) = vWy + Wy, = Viw = v,
Thus in an orthonormal basis, ¥-Ww is a sum of projected products. If ¥ has only one
component, ie. 7 = Zv, this reduces to the geometric interpretation v-w = vw,.

* Matrix notation - new concepts we need to treat the dot product.

T
o Transpose M flips a matrix M along its main diagonal: (‘Z Z) = (Z 2) .
= [t (s almost invariably connected with the dot product as in the contraction viw.

» Symmetry: M is symmetric if MT = M and antisymmetric if MT = —M.

1- * *
o Hermitian confugate MT = M*T also conjugates complex vectors: (‘Cl 3) = (Z 2)
= The transpose ignores scalars (a)" = (a) and complex conjugate applies to each element.
* The inverse Mt and transposes MT,M* all share a key property: (AB)T = BTAT.

» They are also all involutions (self-inverse): (A7) = A.

[e]

w.
Inner product: v'w = (Vx Vy) (Wx) is a contraction. Thus (vIw)" = w)(v7)" = wTv = vTw.

v VW, Uy W. i
Outer product. vw" = (U;) Wx Wy) = (U;Wi v;wi ), components of projection (above).
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* Multiplicative identity operator: Iv=v, viI=v

[e]

ldentity matvix. 1 = ( ) has three(!) interpretations related to the dot product:

o

T T

, Viw = vTw.

= Canonical basis transformation: &= (&, &,) =1 where &, = ((1)) e, = (2)
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= Orthonormal metric: T -8 = (&; )T -(&; &)= <21 (8, &)= <
2

We can use these properties to derive the inner product form of the dot product:
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7-w=@v)@w) =@’ @w) =v@" &) w=vIw=viw=vw, +rw, or -

The same formalism applies to the metric of a non-orthonormal basis:

5w = (@) (8w) = (@) (Bw) =vI (@ &) w=vTgw=x W(5F (), -7

where the metric g=8" - &= (

o

9yx  YGyy

g=(o1e e eZ) = (gxx Ixy ) characterizes the dot product.

é, € €6, Jyx  Gyy
Example: in statistics the multivariable extension of z = % is the residual ¥ =% —fi.
2 2
To generalize o, we square o to obtain the symmetric covariance matrix T = <0121 Ulf),
021 022
which appears in x* = - ¥ = x"Wy, as the weight W = 371 called the Mahalanobis metric.

* Index (implicit summation or Einstein) notation

o

o

o

my1 My

My mzz) ~my; always row,col same as contractions

Indexed elements of a matrix: M = (

Contraction: ¥-W = ¥, vw; = v;w; where the summation is implied (since it's always there!)

Augmentation: C = AB or (i; ZZ) = (Z; Z;Z) (2; Z:;) or cy =X ;a;by = ajb ,
which represents 4 equations, one for each i and j, for example ci, = ay;bj, = a11b15 + a12bz2,
representing a contraction for each row of A and column of B, all augmented together.
The j is called a 'dummy index'. [t can be replaced by any symbol and expands to a sum.

Be caveful to use a different dummy index for each new summation (only 2 i's or j's).

The Kronecker delta symbol §;; = {(1) i ;:tj represents the components of the identity matrix
I= (1 0) = (%1 %2) and has the same property: Tv=v or &yv, =v,. Thus the rule to
0 1) \61 62) property: Y = Vi

simplify equations is to remove §;; and replace all of one dummy index with the other. If
both i and j are repeated, like o =v;5;;w;, you can replace either to get a = v;w; = vjw; .
Conservation law of symbols: everything must match on the LHS and RHS of an equation:

1) units, 2) tensor rank (scalar, vector, operator, ..), 3) matrix dimension, 4) indices

With these rules, we can repeat the calculation of dot product in terms of components:

1.7 W= (éivi) . (éjwl) =7V (él . é]) W] = viSijo = VWi = U)Wy + 'UyWy.

The same formalism applies to the metric of a non-orthonormal basis:

vV-w= (eivi) . (ejwl) =7V (ei . e]) Wj = Vi gijWj = UxGxxWx + UxGxyWy + Uy GyxWx + VyGyyWy-

The indices 'vrun over' either 1,2,3 or x,y,z for the labels of the different components.
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https://en.wikipedia.org/wiki/Mahalanobis_distance

