LO7 Operators

Thursday, February 1, 2024 9:08 AM

- We have discussed three multilinear structures: $:: V \times V \to \mathbb{R}$, $\times: V \times V \to V$, and $\times:: V \times V \times V$. We also analyzed the projections: $\hat{n}\hat{n}:: V \to V_{\parallel}$ and $-\hat{n} \times \hat{n} \times: V \to V_{\perp}$, which are linear operators. In fact, the dot, cross, tripple products are linear because their orthogonal projections are.
 - Definition: a *map* is a function $M: V_1 \to V_2: v_1 \mapsto v_2 = M(v_1)$ between spaces (ie vectors). It is usually drawn as arrows between gridded spaces, because of its higher dimensionality.
 - The *composition* of maps $M: V_1 \to V_2$ and $L: V_2 \to V_3$ is $L \circ M: V_1 \to V_3: v_1 \mapsto v_3 = L(M(v_1))$. Maps compose from right to left, since they act on the right (the rightmost acts first).
 - The *identity* is the map $I: V_1 \to V_2: v \to I(v) = v$. It acts like 1: IM = M = MI.
 - The *inverse* map: $M^{-1}: V_2 \to V_1: v_2 \mapsto v_1 = M^{-1}(v_2)$ where $M(v_1) = v(2)$. Thus $M^{-1}M = I = MM^{-1}$.
 - It *linear* if it respects linear combinations: $M(\vec{a}_i \alpha_i) = M(\vec{a}_i)\alpha_i$. You can perform the linear combination before or after mapping the the other space. This makes it easy to use. because a linear operator is completely defined by its action of a basis, so it has a similar geometrical structure as vectors themselves: if \vec{e}_1, \vec{e}_2 is a basis of V_1 , then $M(\vec{e}_1), M(\vec{e}_2)$ is a natural basis of V_2 and both have the 'eggcrate' grid structure.
 - The adjoint map $M^T: V_2 \to V_1$ respects the inner product: $\vec{v} \cdot M(\vec{w}) = M^T(\vec{v}) \cdot \vec{w}$. Note that the \Box^T notation is connected to the dot product, as promised.
 - An *operator* is a map (function) $M: V \to V$ on a vector space (it operates on vectors), and thus operators can be composed with themselves. Example: $P^2 = P$.
 - We will see that all linear operators can be decomposed into stretches and rotations, just like complex numbers.
- Components: linear maps (and operators) lend themselves to matrices, just like dot/cross. They contain the same contraction pattern we have seen many times already.
 - The components of a map form a matrix with elements from the action on basis vectors.
 - The elements M_{ij} of $\mathbb{M} = \begin{pmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \end{pmatrix}$ are indexed by row, col (the same pattern).
 - The dimension of $M: V_1 \to V_2$, annotated ${}_m\mathbb{M}_n$, where m, n are the number of rows, cols (same again) represents the dimensions of $V_1 \sim \mathbb{R}^n$ and $V_2 \sim \mathbb{R}^m$ (note the backward order).
 - Composition of functions is represented by matrix multiplication (all possible contractions). The dimensions must align for the contraction: ${}_{l}\mathbb{K}_{n} = {}_{l}\mathbb{L}_{m} {}_{m}\mathbb{M}_{n} = {}_{l}\mathbb{L}_{m}\mathbb{M}_{n}$.
 - The identity matrix $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ represents the identity operator I; thus, IM = M = MI.
 - \circ The determinant |M| represents the volume expansion of M by the triple product $|\vec{a}\vec{b}\vec{c}|$.

- The trace Tr M represents the perimeter of M acting on the unit volume $(\hat{x}\hat{y}\hat{z})$.
- The inverse $M^{-1} = \operatorname{adj} M / |M|$ is the matrix of M^{-1} (see LOG).
- The transpose $\mathbb{M}^{\mathrm{T}} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \\ M_{31} & M_{32} \end{pmatrix}$ is the matrix of the adjoint M^{T} .
- Matrices can be *active* (from one space to another, or moving things around)
 - or *passive* (components of the identity in two basis) for component transformations.
- Index notation
 - Reminder: components are indexed by x, y, z or equivalently 1,2,3. indices i, j, k are variables that each represent either x, y, or z.
 - Each index should be repeated exactly twice (any exceptions should be explained)
 - An index repeated on both sides of the equation represents multiple equations
 - An index repeated on the same side of the equation is implicitly summed over
 - We already saw contraction (dot) and antisymmetric product (cross).
 - Matrix multiplication K = LM is just many contractions $K_{ik} = \sum_{j=1}^{3} L_{ij}M_{jk} = L_{ij}M_{jk}$. Note: two indices j must be next-door neighbors to represent matrix multiplication. This proves that matrix multiplication is noncommutative: $LM \neq ML$ in general.
 - Multiple products: $(KLM)_{il} = K_{ij}L_{ik}M_{kl}$. From this we see matrix multiplication is associative.
 - Transpose: $(M^T)_{ii} = M_{ji}$. From this, we see that $(LM)^T = M^T L^T$.
- Components follow from linearity; and transform according to vector transformations.
 - Matrix elements: $\vec{M}(\vec{v}) = \vec{M}(\vec{e}v) = \vec{M}(\vec{e})v = \vec{e}Mv$ or $\vec{M}(\vec{v}) = \vec{M}(\vec{e}_j v_j) = \vec{M}(\vec{e}_j)v_j = \vec{M}_j v_j = \vec{e}_i M_{ij} v_j$. Thus, the jth column of M has the components of $\vec{M}(\vec{e}_j)$; there are two bases: rows,cols. If $\vec{w} = \vec{M}(\vec{v})$, then w = Mv. In an orthonormal basis where $\vec{w} = \hat{e}w$, then $M = \hat{e}^T \cdot \vec{M}(\hat{e})$.
 - Vector transformation: if $v' = \mathbb{R}v$ then $\vec{v} = \vec{e}'v' = \vec{e}'(\mathbb{R}v) = (\vec{e}'\mathbb{R})v = \vec{e}v$, so $\vec{e}' = \vec{e}\mathbb{R}^{-1}$
 - similarity transform: $w' = \mathbb{R}(w = \mathbb{M}(v = \mathbb{R}^{-1}v') = \mathbb{R}\mathbb{M}\mathbb{R}^{-1}v' = \mathbb{M}v'$, so $\mathbb{M}' = \mathbb{R}\mathbb{M}\mathbb{R}^{-1}$
 - $\circ \text{ congruency transform: } \vec{v} \cdot \vec{w} = {v'}^T g' w' = (\mathbb{R}v)^T g'(\mathbb{R}w) = v^T (\mathbb{R}^T g' \mathbb{R}) w, \text{ so } g' = \mathbb{R}^{T^{-1}} g \mathbb{R}^{-1}.$
 - Orthogonal transformation: $v = \mathbb{R}^{-1}v' = \mathbb{R}^{T}v'$ so $\mathbb{M}' = \mathbb{R}\mathbb{M}\mathbb{R}^{T}$ and $g' = \mathbb{R}g\mathbb{R}^{T}$ look the same. The basis transformation appears the same with $\vec{e} \to \vec{e}^{T}$: so $\vec{e}'^{T} = (\vec{e}\mathbb{R}^{-1})^{T} = (\vec{e}\mathbb{R}^{T})^{T} = \mathbb{R}\vec{e}^{T}$.