University of Kentucky, Physics 306 Homework #1, Rev. B, due Wednesday, 2025-01-22

1. Perform the following exercises in **Mathematica**. The **Typewriter** font indicates command names.

a) Plot Exp[-1/x] and its Derivatives—it transitions very smoothly to 0 for all x < 0.

- **b)** Find the Series of $(1 + x)^a$ about x = 0 to deduce the binomial expansion.
- c) Build a Plot of $x/(a^2 x^2)$ piece by piece, starting from x^2 , then $a^2 x^2$, etc.

d) Plot the functions Sin[x], Sin[x-a], Sin[x/b], Sin[(x-a)/b], $Sin[x]^2$, ArcSin[x] using your own numbers for constants a and b.

e) Show graphically that i) $\cos^2(x) = (1 + \cos(2x))/2$, ii) $\sin^2(x) = (1 - \cos(2x))/2$, iii) $2\cos(x)\sin(x) = \sin(2x)$, iv) $\cos^2(x) + \sin^2(x) = 1$, v) $(\cos(x) - \sin(x))(\cos(x) + \sin(x)) = \cos(2x)$.

f) Manipulate a Plot of f(t) = x0 Exp[-alpha t] Sin[w t] with sliders for the parameters x_0 , α , ω to investigate their effect on damped oscillatory motion, and also f(x,t) = Cos[x - 2 Pi t] versus x with sliding parameter t to see the wave travel.

g) Solve x²+1==0 for x and substitute x->I into the LHS $x^2 + 1$ using the /. operator.

h) Show Euler's theorem: Exp[I x] = Cos[x] + I Sin[x] by Series expansion of both sides. [bonus: Solve for $\cos(x)$ and $\sin(x)$ in terms of e^{ix} and e^{-ix}].

i) Plot the functions Exp[x]/2, -Exp[x]/2, Exp[-x]/2, -Exp[-x]/2 along with the hyperbolic functions Sinh[x], Cosh[x], -Sinh[x], -Cosh[x] and compare your results with h).

j) Show that $Cosh[x]^2-Sinh[x]^2 = 1$ and compare your results with e). [bonus: Parametrically plot $(x,y)=\{Cos[t],Sin[t]\}$ and compare with $\{Cosh[t],Sin[t]\}$. What is the relation to the above identities? Thus they are called circular (elliptical) and hyperbolic functions.]

k) Show graphically that ArcSinh[y] = Log[y+Sqrt[y^2+1]]. [bonus: What is Tanh in terms of Exp? Compare the sigmoid functions Tanh[x] and 2/Pi ArcTan[Pi/2 x].]

l) [bonus: Explore plots of the matrix equation $\{x,y\}$. $\{a,b\}$, $\{b,c\}\}$. $\{x,y\}$ ==0 for various values of (a, b, c) to discover conic sections. Calculate Det[$\{a,b\}$, $\{b,c\}\}$] for each.]

m) [bonus: Normalize the normal distribution $p(x) = \text{Exp}[-((x-mu)/\text{sig})^2/2]$ so that it Integrates to 1 over the real line $-\infty < x < \infty$. Plot the normal distribution and the cumulative distribution $P(x) = \int_{-\infty}^{x} p(x)$ for $\mu = 2$ and $\sigma = 3$.]

n) [bonus: Show that the three functions $f(x, y) = \text{Cos}[x] \{\text{Exp}[-y], \text{Sinh}[y], \text{Cosh}[y]\}$ are all solutions of $\nabla^2 f = 0$. ContourPlot the functions.]

o) [bonus: ContourPlot the Re, Im parts of $f(z) = z^2 = (x + I y)^2$, Cos[z], Sin[z], Exp[z].]

2. Taylor Series approximations allow focusing on the essential physics and analytically calculating problems with no closed form solution.

a) Calculate the Taylor series $f(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \frac{1}{3!}f^{(3)}(a)(x-a)^3 + \dots$ of $f(x) = e^x$, $\cos(x)$, $\sin(x)$ to 5th order (x^5) about a = 0 and compare with Mathematica.

b) Perform long division of $\tan(x) = \frac{\sin(x)}{\cos(x)}$ from the series above to obtain the expansion for $\tan(x)$ to 5th order in x and compare with Mathematica.

c) Use the binomial series $(1+x)^{\alpha} = 1 + \frac{\alpha}{1}x + \frac{(\alpha)(\alpha-1)}{(1)(2)}x^2 + \dots$ to obtain the **multipole expansion** of the electrostatic potential $V(\vec{r}) = q/4\pi\epsilon z$, where $z = ((\vec{r} - \vec{r}') \cdot (\vec{r} - \vec{r}') = r^2 - 2rr'\cos\gamma + r'^2)^{1/2}$ to 3rd order in r'. Identify the first four Legendre Polynomials $P_{\ell}(\cos\gamma)$ in the Taylor expansion $V(\vec{r}) = q/4\pi\epsilon r \sum_{\ell=0}^{\infty} (r'/r)^{\ell} P_{\ell}(\cos\gamma) = q/4\pi\epsilon (P_0(\cos\gamma) + P_1(\cos\gamma)(r'/r) + P_2(\cos\gamma)(r'/r)^2 + P_3(\cos\gamma)(r'/r)^3 + \dots)$, which correspond to the monopole, dipole, quadrupole, and sextupole potentials [and moments].

d) In the small-area approximation, the solid angle subtended by a detector of area $|\hat{A}|$ with unit normal \hat{A} located at spherical coordinates (R, Θ, Φ) , tilted down by the angle Γ (from facing the origin) is

$$\Omega(x,y) = \frac{\vec{A} \cdot \hat{D}}{D^2} = \frac{A}{R^2} \frac{\cos \Gamma - \sin(\Theta + \Gamma)(x \cos \Phi + y \sin \Phi)}{(1 - 2 \sin \Theta(x \cos \Phi + y \sin \Phi) + x^2 + y^2)^{3/2}}.$$

Expand $\Omega(x, y)$ to second order in x and y about the origin. [bonus: Show that for the total solid angle of 4 symmetric detectors at azimuthal angles $\Phi = 0, \pi/2, \pi, 3\pi/2$, all terms vanish except $\Omega(x, y) = \Omega_0 + \Omega_2(x^2 + y^2)$. Calculate the relation between Θ and Γ that forces $\Omega_2 = 0$]

A view of two detectors centered at $(R, \Theta, 0)$ and $(R, \Theta, \pi/2)$ in spherical coordinates.