
University of Kentucky, Physics 306
Homework #5, Rev. A, due Monday, 2025-02-18

1. Stretches. In analogy with the polar decomposition w = x + iy = ρeiϕ of complex numbers,
any matrix A can be decomposed A = RS into a stretch S and a rotation R, which are the building
blocks of all linear operators. This problem set explores the structure of stretches.

a) For any eigenvalue problem M v⃗i = v⃗iλi, augment these n equations to obtain MV = VW ,
where W = diag(λ1, λ2, . . .), and thus show M = VWV −1 and W = V −1MV . This is the similarity
transform to the eigenbasis of M , in which the operator’s matrix is diagonal, and its inverse.

b) Diagonalize σx and σy by calculating their eigenbasis Ux,y = (v⃗1|v⃗2) of H04#1c to justify the
similarity transforms σxUx = Uxσz of H04#1d. Thus, σx,y are matrices of the same operator σz in
different bases. Calculate the eigenvalues and eigenvectors of σz, which is already diagonal.

c) Calculate all eigenvalues and eigenvectors of the ladder operators σ± = (σx±iσy)/2 of H04#1b
to show that they are not diagonalizable. Such matrices with less eigevectors than eigenvalues are
called defective (see H08#2). Show that they are also nilpotent: σn

± = 0 for some value n.

d) Calculate the eigenvalues and eigenvectors of the projections P+ =
(
1 0
0 0

)
and P− =

(
0 0
0 1

)
of H04#1b. [bonus: show that projections, P 2 = P , can only have eigenvalues of 0 or 1.]

e) A symmetric matrix S is guaranteed to have a complete set of eigenvectors V = (v⃗1, v⃗2, . . .)
and corresponding eigenvalues λ1, λ2, . . ., such that Sv⃗i = v⃗iλi with the following special properties:
show that i) the eigenvalues of S must be real: λ∗ = λ, and that ii) two eigenvectors v⃗i, v⃗j of S
with distinct eigenvalues λi ̸= λj must be orthogonal: v⃗i · v⃗j = 0. Thus the matrix of eigenvectors
is unitary: V †V = I, so that S = VWV † and W = V †SV . Interpret these similarity transforms
geometrically.

f) In addition to symmetric matrices, complex normal matrics, N †N = NN † (see H08#1), also
have an othogonal eigenbasis but only have real eigenvalues if they are Hermitian, H† = H. Calcu-

late the eigenvalues and eigenvectors of Mz =
(
0 −1
1 0

)
. How were these used previously? Show that

Mz = VWV † = 1
2

(
1 1
i −i

)(
−i 0
0 i

)(
1 −i
1 i

)
and eMzϕ = V eWϕV † = 1

2

(
1 1
i −i

)(
e−iϕ 0
0 eiϕ

)(
1 −i
1 i

)
.

Multiply this out to verify H04#2b. This is an example of the normal matrix analogy, which re-
lates matrices and complex numbers. Hermitian matrices have real eigenvalues while anti-Hermitian
matrices have zeros on the diagonal and imaginary eigenvalues. The exponential of a Hermitian ma-
trix is positive definite and has real positive eigenvalues, while the exponential of an anti-Hermitian
matrix is unitary with unit modulus eigenvalues and therefore determinant.

2. [bonus: We saw in H04#1 that the trace and determinant are matrix invariants under similarity
transformation. In general, an n× n matrix has n independent invariants, including the trace and
determinant.

a) Show that the characteristic equation |A − λI| = λn + an−1λ
n−1 + . . . + a1λ + a0 = 0,

substituting λ → A in the second equality, is invariant under similarity transforms. Thus A has n
independent invariants: either a0 . . . an−1 of this equation, its n eigenvalue roots, or the traces of
A1, A2, . . . , An. The first and last coefficients an−1 and a0 are tr(A) and det(A), respectively, while
the others are k-dimensional ‘perimeters’, for example, surface area, of the transformation.
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https://en.wikipedia.org/wiki/Polar_decomposition#Matrix_polar_decomposition
https://en.wikipedia.org/wiki/Normal_matrix#Normal_matrix_analogy


b) Prove the Cayley-Hamilton Theorem, that any matrix A satisfies its own characteristic equa-
tion, for the case of diagonal matrices. The full theorem follows from the invariance of the charac-
teristic equation. Show that A−1 = −(An−1 + an−1A

n−2 + . . .+ a1I)/a0.]
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https://www.cuemath.com/algebra/cayley-hamilton-theorem/

