
University of Kentucky, Physics 306
Homework #9, Rev. A, due Wednesday, 2025-03-31

1. Vectors in curvilinear coordinates (q1, q2, q3) have a natural coordinate basis bi ≡ ∂r/∂qi and
reciprocal basis bi ≡ ∇qi = ∂qi/∂r. Each basis vector is a vector field (a function of position). The
most common coordinate systems are Cartesian qi = (x, y, z), cylindrical qi = (ρ, ϕ, z), and spherical
qi = (r, θ, ϕ), defined by the transformations x + iy = ρeiϕ and z + iρ = reiθ, respectively. These
are all orthogonal, right-handed systems, for which both bases are aligned with the orthonormal
basis êi = bi/hi = bihi, where hi = |bi| = 1/|bi| is called the scale factor.

a) Determine the coordinate transformation qi(qi
′
) from each coordinate system to each of the

others. Hint: invert and combine the two transformations above.

b) For each coordinate system, illustrate the three coordinate isosurfaces qi(r) = qi0 (constant)
passing through an arbitrary point r0, labeling lengths and angles in your diagram. For each
coordinate qi, identify the curve s(qi; qj0, q

k
0 ) at the intersection of two surfaces of constant qj = qj0

and qk = qk0 .

c) For each coordinate system, calculate bi = ∂r/∂qi using dr = x̂dx + ŷdy + ẑdz. Calculate
the metric gij = bi · bj = diag(h21, h

2
2, h

2
3) and normalize bi = êihi to find the unit vectors. The

scale factors hθ and hϕ for angular coordinates are just the radii of curvature, according to the arc
length formulae dsθ = rdθ and dsϕ = ρdϕ.

d) Construct the transformation matrices between unit bases, by considering rotations Rẑ(ϕ)
(rotation by an angle ϕ about the z-axis) and Rϕ̂(θ) (about the rotated y-axis). Compare with

part c).

e) For each coordinate system, calculate the line element dl = êihidq
i, the area element da =

1
2dl× dl = êk hihj dq

idqj , and the volume element dτ = 1
3dl · da = h1h2h3 dq

1dq2dq3.

f) Use the coordinate transformations (ρ, ϕ, z) = f−1(x, y, z) from a) to calculate the covariant
basis bi = ∇qi = êi/hi and verify that bi · bj = δji . Calculate gij = bi · bj = diag(h−2

1 , h−2
2 , h−2

3 ).
[bonus: Do the same for spherical coordinates.]

[bonus: 2. Conformal maps: in contrast to vector spaces, which have a linear (parallel) structure,
curvilinear coordinate systems (parametrizations of points in space) can have curves and surfaces of
any nondegenerate shape (every point has unique coordinates, except possibly a few singularities).
A coordinate transformation is a multidimensional function f : (x, y, z) → (u, v, w) or its inverse
f−1 : (u, v, w) → (x, y, z) between two coordinates of the same point. In 2d these can be represented
by complex functions w = u+ iv = f(x+ iy) = f(z).

An orthogonal coordinate system is one in which the coordinate lines and surfaces intersect at right
angles. In 2d, this is automatically satisfied by analytic functions, which formally depend only on z
and not z∗, for example, any combination of algebraic or trigonometric functions of z. In fact, both
u(x, y) and v(x, y) satisfy the Laplace equation, so that the contours of these function represent
physical potentials and field lines, respectively in 2d. These functions can be composed to create
most common coordinate systems in 2d.

For each of the functions w = f(z) mapping z = x + iy 7→ w = u + iv, plot: i) the contours of
u(x, y) and v(x, y) in the z-plane; and ii) the two families of curves f(x + iy), parameterized by
constant x or y respectively, in the w-plane (the inverse transformation).
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a) f(z) = z + c for a complex constant c = a+ ib (use c = 2 + i).

b) f(z) = cz for the same constant c.

c) f(z) = z2. Show the two branches in the z-plane and the corresponding branch cut in w.

d) f(z) = ez, the transformation to polar coordinates z = ρeiϕ.

e) f(z) = cosh(z), the transformation to elliptical coordinates.

f) f(z) = ez + z. A contour of this function was used by Rogowski to create a smooth edge of
and electrode without any “hot spots” of high electric field which would arc. The other family of
contours represents the lines of electric flux ending at charges on the electrode.

g) Conformal maps are ideal candidates for orthogonal coordinate systems, and can be used to
succinctly represent coordinate transformations. For example, the transformation between Carte-
sian and cylindrical coordinates is simply the rotation x + iy = ρeiϕ with z the same, and the
transformation from cylindrical to spherical is the second rotation z + iρ = reiθ with ϕ the same.
Write each of the orthogonal coordinate systems of Spiegel, “Vector Analysis”, Ch. 7, in terms of
conformal functions (u, v, w) 7→ (x, y, z): 1) cylindrical, 2) spherical, 3) parabolic, 4) paraboloidal,
5) elliptic, 6) prolate spheroidal, 7) oblate spheroidal, 8) ellipsoidal, 9) bipolar. ]

3. The magnetic analog of Coulomb’s law (with a scalar charge element dq = λdl = σda = ρdτ) is
the Biot-Savart law (with a vector current element vdq = Idl = Kda = Jdτ):

B =
µ0

4π

∮ ′ vdq′ × r
r3

≈
∑
i

(
∆B =

µ0

4π

I∆ℓ× r0

r3
0

)
i

, (1)

where ∆ℓ is the displacement vector from the beginning to the end of each current segment, and
r0 is the displacement vector from the middle of each current segment r′0 to the field point r.
The approximation is that all of the current is concentrated at r′0 instead of spread out along the
length of the segment from r′0 −∆ℓ/2 to r′0 +∆ℓ/2. In this problem we first calculate a correction
term to account for this difference, and then calculate the exact B-field due to each straight segment.

a) To analytically integrate the Biot-Savart law along a single straight segment of the path,
parametrize the segment r′(s) with the parameter s, ranging from s = −1

2 at the beginning to
s = +1

2 at the end of the segment. The parameterization involves the constant vectors r′0 (the
center of the segment) and ∆ℓ (displacement along the segment). Calculate the line element
dl = dr′

ds ds. Calculate r as a function of r0, ∆ℓ, and s. Substitute these into the Biot-Savart
formula and factor out the constant approximation of Eq. 1] to obtain

∆B(r) =
µ0

4π

I∆ℓ×r0

r3
0

T (α, β), (2)

where the integral T (α, β) along s depends on α = r0 ·∆ℓ/r2
0 and β = ∆ℓ2/r2
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b) [bonus: Approximate the integrand of T (α, β) to order s2 and integrate to obtain the cor-
rection term T (α, β) ≈ 1 + 1

8(5α
2 − β) for the case where all the current is at the center of the

segment.]

c) Calculate the exact integral T (α, β) and show that ∆B = µ0I
4π

∆ℓ×r 0

(∆ℓ×r 0)
2 ∆ℓ · ( r̂− − r̂+) , where

r± = r − r′(±1
2) is the displacement vector from each end of the segment to the field point and

r̂± = r±/r±.

d) [bonus: show that this is equivalent to ∆B = µ0I
4π

(r−×r+)(r−+r+)
r− r+ (r− r++r−·r+) . ]

[bonus: 4. Current sheet—surface currents can be approximated numerically by a tiling of
quadrilaterals like the one shown below, with current I flowing parallel to the top and bottom
edges, from left to right. Let the vector ℓ = ℓ+ = ℓ− run along either the top or bottom edge,
parallel to the current; w = w− = w+ from bottom to top along the left or right edge; and r0 be
the point at the center of the parallelogram as shown in the diagram.
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a) Parametrize the surface of the parallelogram as r′(s, t), with the top and bottom edges are
at t = +1

2 and −1
2 , and the left and right edges are at s = +1

2 and −1
2 respectively.

b) Write down the Biot-Savart integral for the magnetic field in terms of integration parameters
s, t and constants r0 ≡ r − r′0, ℓ, and w.

c) Expand in powers of s and t, to calculate the integral up to second order.]

d) It is not possible to tile arbitrary surfaces with parallelograms—we need all four points on the
quadrilateral to be arbitrary. To generalize this solution, let ℓ0, w0 be the corresponding vectors
through the center of the quadrilateral. We need one more vector u0 = ℓ+ − ℓ− = w+ − w−,
where ℓ± run across the top and bottom, and w± run along the right and left sides of the diagram.
Generalize steps (a)-(c) to calculate B(r).]
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