University of Kentucky, Physics 306 Homework #12, Rev. A, due Wednesday, 2024-04-28

- 1. Solve Laplace's equation $\nabla^2 V = (\partial_x^2 + \partial_y^2)V = 0$ for the **tent potential** V(x,y) defined on the region -a < x < a and -b < y < b with boundary conditions $V(x, \pm b) = 0$ and $V(\pm a, y) = V_0(1 |y/b|)$ by following these steps:
- a) Substitute the eigenfunctions X(x), Y(x) and eigenvalues $-k_x^2$, $-k_y^2$ of the two differential operators ∂_x^2 , ∂_y^2 of Laplace's equation to get the disperson relation between the two eigenvalues.
- **b)** Apply boundary conditions at $y = \pm b$ to quantize k_n , $Y_n(y)$ and therefore $X_n(x)$, and form a linear combination of all eigenfunctions to obtain the general solution $V(x,y) = \sum_n c_n X_n(x) Y_n(y)$.
 - c) Apply boundary conditions at $x = \pm a$ to solve the coefficients c_n of the general solution.
 - d) Sketch the solution and its first three Fourier components in Mathematica.
- **2. Drumhead waves** are described by the PDE $(\frac{1}{v^2} \frac{\partial^2}{\partial t^2} \nabla_{\perp}^2) \eta(\rho, \phi, t) = 0$, where the wave velocity $v = \sqrt{\gamma/\sigma}$ depends on the surface tension γ and the mass density σ of the drumhead.
- a) Use $\partial_t e^{-i\omega t} = -i\omega e^{-i\omega t}$ to obtain the Helmholtz equation $(\nabla_{\perp}^2 + k^2)\eta = 0$ by replacing ∂_t with its *eigenvalue*. Determine the *dispersion relation* between spatial k and temporal ω frequencies.
 - b) Expand $\nabla^2_{\perp} \eta$ in cylindrical coordinates and show the radial part has the equivalent forms

$$\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} = \frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho} = \frac{1}{\sqrt{\rho}} \frac{\partial^2}{\partial \rho^2} \sqrt{\rho} + \frac{1}{4\rho^2}$$

- c) Use the eigenvalue equation $\partial_{\phi}\Phi_{m}(\phi)=im\,\Phi_{m}(\phi)$ to factor out the ϕ dependence in the Laplacian and obtain the Bessel equation. Plot the first three Bessel functions $J_{0}(x)$, $J_{1}(x)$, and $J_{2}(x)$, where $x=k\rho$. Find the lowest-order Taylor approximation of each function as $x\to 0$ and the asymptotic approximation as $x\to \infty$. The energy, which is proportional to the amplitude η squared, spreads out as the circular wavefront expands.
- d) Use the boundary conditions $\eta(\rho,0) = \eta(\rho,2\pi)$ and $\eta_{,\phi}(\rho,0) = \eta_{,\phi}(\rho,2\pi)$ to show that m must be an integer. Use the linearity of ∂_{ϕ} on $\Phi_m(\phi) \pm \Phi_{-m}(\phi)$ to show that $\cos(m\phi)$ and $\sin(m\phi)$ are also eigenfunctions of ∂_{ϕ}^2 (but not ∂_{ϕ} —why?) and determine the eigenvalues. Apply the boundary condition $\eta(a,\phi) = 0$ to find the possible values of k, in terms of x_{nm} , the n^{th} zero of the Bessel function $J_m(x)$. For each combination of m, n plot the node lines where $\eta_{mn}(\rho,\phi) = 0$ and find the vibrational frequency ω_{mn} of this mode.
- e) [bonus: how could this solution be modified to solve the three-dimensional wave equation $(\partial_t^2/v^2 \nabla^2)\Psi(\rho,\phi,z,t) = 0$ with boundary conditions $\Psi(a,\phi,z,t) = \Psi(\rho,\phi,\pm b,t) = 0$?]
- 3. Harmonics are the common multipole angular solutions of any PDE involving the Laplacian.
- a) In the long wavelenth limit $k \to 0$, the Helmholtz equation becomes the Laplace equation $\nabla^2_{\perp} \eta = 0$. The eignfunctions of ∂_{ϕ} are still the cylindrical harmonics $\Phi_m(\phi) = e^{im\phi}$, but for the radial solution, $\lim_{k\to 0} J_m(k\rho)$ transforms each Bessel function to its lowest order Taylor approximation. Put the ansatz $R_m(\rho) = \rho^{\alpha}$, into Laplace's equation and solve for α to find two independent solutions $R_m(\rho)$. One which is finite at the origin $\rho = 0$ and the other as $\rho \to \infty$. Show that for

m = 0, $R(\rho) = \ln(\rho)$ is a second independent solution. Express the planar harmonics $R_m(\rho)e^{im\phi}$ which are finite at origin in the form $(x + iy)^m = A_m + iB_m$ and expand A_m , B_m as polynomial solutions to Laplace's equation. Explicitly verify these solutions up to m = 3.

b) Expand $\nabla^2 V(r,\theta,\phi)$ in spherical coordinates and show the radial part has the forms

$$\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \ = \ \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} \ = \ \frac{1}{r} \frac{\partial^2}{\partial r^2} r$$

- c) Factor out the ϕ -dependence as in #1c) and identify the θ -operator $L^2 = \frac{-d}{dx}(1-x^2)\frac{d}{dx} + \frac{m^2}{1-x^2}$, where $x = \cos\theta$ [distinct from the Cartesian coordinate x and from $x = k\rho$ of #2c)!], to obtain the general Legendre equation, for polar waves. Restriction to m = 0 yields the Legendre polynomials of H07#2c. Continuity at the poles $\theta = 0, \pi$ requires that $\ell = |m|, |m+1|, |m+2|, \ldots, \infty$. Find all ten polar eigenfunctions $P_{\ell}^{|m|}(x)$ up to $\ell = 3$. Pick two harmonics and show that they are eigenfunctions of L^2 . The combined spherical harmonics $Y_{\ell}^{lm} = (-1)^m \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{lm}(\cos\theta) e^{im\phi}$ are normalized eigenfunctions of the operator $L^2(\theta,\phi)$ with eigenvalues $\lambda = \ell(\ell+1)$. They represent the atomic s, p, d, f orbitals for $\ell = 0, 1, 2, 3$. Draw the node lines of each of these ℓ , m-modes on a sphere.
- e) Write ∇^2 using the third form of part 3b) and L^2 . Factor out the angular dependence and solve the radial Laplace equation for the two eigenfunctions $R_l(r)$ for each ℓ as in part a) to obtain the solid harmonics $R_\ell^m(\mathbf{r})$ and $I_l^m(\mathbf{r})$. Expand $R_\ell^m(\mathbf{r})$ in Cartesian coordinates, factoring out the planar harmonic in each. These multinomials in x, y, z are used to label the sub-orbitals.
- f) [bonus: Solve the Laplace boundary value problem in all space with a point flux source at $\mathbf{r}' = (r', \theta', \phi')$ to obtain the potential $V(\mathbf{r}) = \sum_{lm} R_l^{m*}(\mathbf{r}') I_l^m(\mathbf{r})$ if r < r' or $\sum_{lm} R_l^{m*}(\mathbf{r}') I_l^m(\mathbf{r})$ if r > r'. $Q_{lm} = \int dq' R_l^{m*}(\mathbf{r}')$ is the interior [or $I_l^{m*}(\mathbf{r}')$ for the exterior] multipole moment of the charge distribution, and $I_l^m(\mathbf{r})$ [or $R_l^m(\mathbf{r})$] is its corresponding potential. Compare with the point potential Green's function $V(\mathbf{r}) = \frac{1}{4\pi 2}$ to obtain the addition theorem $\frac{1}{2} = \sum_{\ell=0}^{\infty} \frac{r_{<\ell}}{r_{>}^{\ell+1}} P_{\ell}(\cos \gamma)$, where γ is the angle between \mathbf{r} and \mathbf{r}' and $P_{\ell}(\cos \gamma) = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} Y_{lm}^*(\theta', \phi') Y_{lm}(\theta, \phi)$, and $r_{<\ell}$, $r_{>}$ are the lesser and greater values of r, r', respectively.]
- g) [bonus: Show that the spherical solution of the Helmholtz equation $(\nabla^2 + k^2)j_l(kr)Y_{lm}(\theta,\phi)$ is similar to cylindrical with $m \to \ell + \frac{1}{2}$, and thus the solutions are the *spherical Bessel functions* $j_l(kr) = \sqrt{\frac{\pi}{2kr}}J_{\ell+1/2}(kr)$. The same principle holds for all wave equations in different dimensions. Calculate and illustrate the modes of a spherical wave confined to r < a à la #2d).]