Arizona State University, Physics 311 Problem Set #2, Rev. B, due Wednesday, 2014-01-29

1. Coordinate basis

The coordinate basis $\mathbf{b}_i = \partial \mathbf{r}/\partial q^i$, reciprocal basis $\mathbf{b}^i = \nabla q^i = \partial q^i/\partial \mathbf{r}$, and unit basis $\hat{e}_i = \mathbf{b}_i/h_i$ (where the scale factor is $h_i = |\mathbf{b}_i|$), are the natural bases to describe components of a vector field in a curvilinear coordinate system (q^1, q^2, q^3) . Note that these basis vectors change from one point to the next. Calculate each of the following in both cylindrical and spherical coordinates.

- a) Calculate (b_s, b_{ϕ}, b_z) as a functions of $q^i = (s, \phi, z)$ and $(b_r, b_{\theta}, b_{\phi})$ as functions of (r, θ, ϕ) .
- b) Calculate the resulting scale factors h_i to get unit vectors. Write out the basis transformation matrix in terms of these vectors, i.e. $(\hat{s}, \hat{\phi}, \hat{z}) = (\hat{x}, \hat{y}, \hat{z})R$.
- c) Construct the transformation matrices between unit bases, by considering rotations $R_{\hat{z}}(\phi)$ (rotation about an angle ϕ about the z-axis) and $R_{\hat{\phi}}(\theta)$ and compare with part b.
 - d) Calculate the reciprocal vectors $(\boldsymbol{b}^s, \boldsymbol{b}^\phi, \boldsymbol{b}^z)$ and $(\boldsymbol{b}^r, \boldsymbol{b}^\theta, \boldsymbol{b}^\phi)$. Show that $\boldsymbol{b}_i \cdot \boldsymbol{b}^j = \delta_i{}^j$ in general.
- e) Calculate the line element $dl = b_i dq^i$, area element $da = \frac{1}{2}dl \times dl$, and volume element $d\tau = \frac{1}{6}dl \cdot dl \times dl$. Note that since differentials anticommute, their cross products are not zero.
- f) Bonus: Calculate the metric $g_{ij} = \mathbf{b}_i \cdot \mathbf{b}_j$ and $g^{ij} = \mathbf{b}^i \cdot \mathbf{b}^j$ in terms of h_i . Show they are reciprocal.
- g) Bonus: Calculate the derivatives of the basis vectors along coordinate lines, $\Gamma_{ij} = \Gamma_{ij}{}^k \boldsymbol{b}_k = \partial \boldsymbol{b}_i/\partial q^j = \partial^2 \boldsymbol{r}/\partial q^i \partial q^j$. These *Christoffel symbols* and are needed to calculate derivatives of vectors in curvilinear coordinates.

Also, Griffiths 3ed[4ed] chapter 1, problems #13[13], 19[20], 21[22], 25[26], 38[39], 39[40], 40[41], 42[43].