University of Kentucky, Physics 335 Homework #4, Rev. B, due Thursday, 2021-11-17

1. Linear fit. Fit the following data with uncertainties to a straight line:

a) Calculate the $n \times m$ design matrix $X = [x^0 \ x^1]$ for the linear fit y = f(x) = a + bx for n = 4 data points to m = 2 fit parameters, and write out the corresponding matrix equation Y = Xa. Calculate the weight [metric] $W = \delta^{-2}Y$, (inverse covariance matrix), the least squares inverse $X^{-1} = (X^T W X)^{-1} X^T W$, the fit coefficients $a = X^{-1}Y$, and covariance matrix $\delta^2 a$. Tabulate the residuals $\chi = Y - Xa$, individual squares $\chi_i^2 = ((y_i - f(x_i))/\delta y_i)^2$, and the sum $\chi^2 = \chi^T W \chi$. How many degrees of freedom ν are there?

b) [bonus: Neglecting the uncertainties for simplicity, solve for X^{\dashv} by computing the Singular Value Decomposition (SVD) $X = UWV^T$ of the $n \times m$ matrix X, where U and V are orthogonal matrices of the singular vectors $U^TU = I_n$, $V^TV = I_m$, and W is the $m \times n$ diagonal matrix of singular values (eigenvalues) of X. Show algebraically that $X^{\dashv} = VW^{\dashv}U^T$, where W^{\dashv} is the $m \times n$ diagonal matrix of inverse singular values. What is the geometric interpretation of the left and right singular vectors? Repeat with $\delta^2 Y$ using the Generalized SVD.]

2. The following waveform data in mV were captured on an oscilloscope with a $\Delta t = 1$ ms sample interval, from the voltage output of a magnetometer measuring the field of an AC-driven coil:

V= [3.81, 2.96, 2.36, 2.40, 0.47, 2.29, 0.51, -0.06, -2.00, -0.42, 0.06, ...

0.57, 0.29, 2.07, 2.47, 2.86, 2.78, 1.86, 1.37, -0.43, 0.03]

Fit these data for the amplitude A, angular frequency ω , phase ϕ , and offset B of a sine wave in the semilinear model $V(t) = A \cos(\omega t - \phi) + B$ ignoring errors using the following steps:

a) Plot the data and fit function, estimating of all four parameters (Note the data span approximately one period, ranging from the peak $V \approx 2$ mV, to the minimum $V \approx 0$ ms and back to the top). [bonus: estimate A, ϕ, ω , and B from the complex FFT of V.]

b) Linearize this model to $V = B + C \cos(\omega t) + D \sin(\omega t) = Ta$ for constant ω using the addition formula $\cos(\alpha - \beta) = \cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta)$. Follow the steps in 1a) to perform a linear fit on $V \approx Ta$ for parameters $a = (BCD)^T = T^{\dashv}V$, and calculate $\chi^2 = (V - Ta)^T (V - Ta)$.

c) Fit for ω by minimizing χ^2 as a function of ω . [bonus: fit $\chi^2(\omega)$ to a parabola] Calculate the fitted fitted amplitude, phase, and offset from the corresponding fit parameters a and plot V(t). Estimate the uncertainty δV of the voltage data by setting $\chi^2 = \nu = 21 - 4$ the number of degrees of freedom. [bonus: find covariance matrix of the fit parameters from $\delta^2 a$.]

c) [bonus: Fit a histogram of the residuals to the Gaussian $p_G(x) = N \exp(-((x - \mu)/\sigma)^2/2)$ by linearizing it to the quadratic form $\ln(p_G) = a + bx + cx^2$ and performing a linear fit on the binned χ^2 data for $(a \ b \ c)^T$. Compare your fitted values of μ and σ with the mean and residual of the distribution. Are they within error of what you expect, given χ^2 above? What is the likelihood of χ^2 being greater than the fitted value?