University of Kentucky, Physics 335 Laboratory #3, Rev. B, due Tuesday, 2022-09-06

This lab explores the distribution of the random variable X representing the number of fish caught in 100 minutes, assuming a 5% chance of catching a fish per minute, Prof. Straley's simulation https://www.pa.uky.edu/~straley/crawfordprojects/poisson.htm.

1. Theoretical estimation of the Parent Distribution

- a) What is the expected number λ of fishes to be caught in 100 min? Tabulate the Poisson distribution given λ for $x = 0, 1, 2, \dots 10$.
- b) Draw step plot of the Poisson distribution P(x) out to x = 10, labeling your axes in the figure, which should span the entire width of your sheet. Plot the binomial distribution for n = 10, $np = \lambda$ (X02) on the same graph with the symbol \times . [bonus: also for n = 100, the actual simulation]
- c) Calculate the $\mu = \lambda$ and $\sigma = \sqrt{\lambda}$ from the distribution. Why are they slightly different? Plot the mean as a vertical line on the distribution and indicate the $\mu \pm \sigma$ interval in each direction.

2. Experimental measurement of a Sample Distribution

- a) Perform an experiment to estimate P(x) by running the simulation N=25 times, recording the numerical value of each result in a list. Calculate the mean \bar{x} and standard deviation s of this sample. Make a new plot of each point $x_i \pm \delta x_i$ with error bars versus i on the abscissa. Draw a horizontal line at height \bar{x} running through all points. How many error bars touch the line?
- b) Add the frequency of occurrences of each value of x to a new line of the table in 1a). Normalize the distribution to 1 and plot $(m_x \pm \sqrt{m_x})/N$ with a solid circle and error bars in each bin on the graph of 1b). Draw a horizontal error bar representing the mean $\bar{x} \pm \delta \bar{x}$.
- c) Calculate chi-squared $\chi^2 = \sum_x \left(\frac{m_x NP(x)}{\delta m_x}\right)^2 = \sum_x \frac{(m_x NP(x))^2}{m_x}$. Since terms with $m_x = 0$ are undefined, and bins with $m_x < 5$ have poor statistics, group x bins together to obtain super-bins of at least $\sum m_x \ge 5$ for each term in χ^2 . Is the average deviation in each bin about 1?

3. Calculation of the Combined Distribution

- a) Tabulate your frequency distribution, mean, and standard deviation on the white board along with each other group. Calculate the combined sample distribution, its mean, and standard deviation \bar{s} on a new line in the table of 1a).
- b) Add the combined distribution $(m_x \pm \sqrt{m_x})/N$ from 3a) to the plot of 1b) using unfilled square makers with error bars. Plot the mean \bar{x}_i from each group with ticks on the horizontal error bar of 2b). Add a horizontal error bar for the combined mean $\bar{x} \pm \delta \bar{x}$ above the previous one. Recalculate χ^2 . How did it change with higher statistics?
 - c) Qualitatively compare the plots and statistics of each of these distributions.