University of Kentucky, Physics 335 Homework #6, Rev. C, due Wednesday, 2023-10-18

1-d. Gaussian Moments—In this homework we will learn the techniques for evaluating Gaussian integrals, and to use them to investigate the covariance of the joint Gaussian integral.

a) We saw in H05 that a 2-d Gaussian was much easier to generate than 1-d because of its natural Jacobian for χ^2 . Integrate $I_0^2 = \int_{-\infty}^{\infty} dz_1 \int_{-\infty}^{\infty} dz_2 e^{-\chi^2/2}$, where $\vec{\chi} = (z_1, z_2)$ in cylindrical coordinates to normalize the 2-d Gaussian, as in H05 2a). Show that this is the square of $I_0 = \int_{-\infty}^{\infty} dz e^{-z^2/2}$ for $\vec{\chi} = (z)$. Use this fact to normalize the 1-d (and in general, ν -d) Gaussian.

b) Perform a change-of-variables to $\alpha x^2 = \chi^2/2$ on the above two integrals to evaluate $I_n(\alpha) = \int_0^\infty dx \, x^n e^{\alpha x^2}$ for n = 0, 1. Take the derivative with respect to α of both sides of the above integral indentities repeatedly to evaluate I_n for $n = 2, 3, \ldots$

c) Make the factorials hidden in b) explicit by expressing I_n in terms of the Gamma function $\Gamma(\nu) = \int_0^\infty t^{\nu-1} e^{-t}$. As in b), show that $\Gamma(\nu+1) = \nu \Gamma(\nu)$, $\Gamma(0) = 1$ and $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. Thus $\Gamma(n+1) = n!$ for $n \in \mathbb{N}$ and $\Gamma(\nu)$ is a generalization of the factorial to all real numbers.

d) Transform the moments I_n from z to $x = \mu + \sigma z$ to show that μ and σ are the mean and standard deviation, respectively of the 1-d Gaussian distribution $p_G(x; \mu, \sigma)$.

e) Calculate the mode v_{max} , median $v_{1/2}$, mean \bar{v} , and RMS $v_{rms} = \sqrt{\langle v^2 \rangle}$ velocity [not the standard deviation since \bar{v} is not subtracted] of the Maxwell velocity distribution of H05 #3.

2-d. Gaussian Generator (Reprise)—The general 2-d Gaussian, including both the variances σ_x^2 , σ_y^2 and covariance $\sigma_{xy}^2 = \sigma_{yx}^2$, takes the form $p_G(x_1, x_2) = Ne^{-\chi^2/2}$, where N is the normalization, $\vec{\chi} = \vec{x} - \vec{\mu} = (x_1 - \mu_1, x_2 - \mu_2)$, is the vector of deviances, and $\chi^2 = \vec{\chi} \cdot \vec{\chi} = \chi^T W \chi$ is weighted by the metric $W = \Sigma^{-1}$, which is the inverse of the symmetric covariance matrix

$$\Sigma = \begin{pmatrix} \sigma_x^2 & \sigma_{xy}^2 \\ \sigma_{yx}^2 & \sigma_y^2 \end{pmatrix}.$$

If all covariances vanish (for example, in 1-d), this reduces to $\chi^2 = z_1^2 + z_2^2 + \ldots$ of H05, where the variances have been absorbed into $z_i = (x_i - \mu_i)/\sigma_i$, as before. In this case the distribution factorizes into the simple product $p_G(z_1, z_2, \ldots) = p_G(z_1)p_G(z_2)\cdots$ of 1-d Gaussians. Otherwise, one must transform to new variables $\vec{\chi}' = (u_1, u_2, \ldots)$ to perform this factorization.

a) To generate a $p_G(x_1, x_2)$ with covariance, let u = x + y and v = x - y be independent. Generate n = 100,000 random points (u, v) centered at $\vec{\mu} = (0, 0)$ with $\sigma_u = 1$ and $\sigma_v = 2$. Draw a scatter plot of (x, y). [bonus: draw the u and v axes on the same plot]

b) Calculate the means μ_x , μ_y , variances $\sigma_x^2 = \sigma_{xx}^2$, $\sigma_y^2 = \sigma_{yy}^2$, and covariance σ_{xy}^2 , where $\sigma_{ij}^2 = \sum (x_i - \mu_i)(x_j - \mu_j)/n$, for i, j = x, y. Calculate the correlation coefficient $r = \sigma_{xy}^2/\sigma_x\sigma_y$.

c) Derive the distribution $p_G(x, y)$ from $p_G(u)$ and $p_G(v)$ used in a) to determine the covariance matrix Σ and compare with b). [bonus: graph the contours $\chi^2 = 1$ and $\chi^2 = 2$ in a)]

d) Plot a 2d histogram of (x, y) and calculate the χ^2 statistic on all bins with greater than 10 entries. What is the likelihood of the these random points following this distribution?

e) [bonus: Describe the procedure for generating random pairs (x, y) from a general Gaussian distribution with means $\vec{\mu}$ and covariances Σ . How does this generalize to higher dimension?]