
Wayne Witzke ProblemSet #2 PHY 361

Problem 1

Comparison of Rayleigh-Jeans and Plank for-
mulas for the black body spectrum.

Part a

Draw the node lines for the (nx, ny) = (1, 1);
(1, 2); (2, 1); and (2, 2) standing wave modes
on a square medium with sides of length L.
Show that nxλx = 2L. Show that the density
of modes is G(f) = 8πf2/c3. It is defined
as the number of modes per volume per fre-
quency interval, i.e. G(f) df ≡ d3n/V . Re-
memb er that nx,y,z > 0 and there are two
independent polarizations of light.

Figures 1 through 4 show the standing wave nodes for
the given modes on a square medium with sides of
length L.

Figure 1: Standing Wave Modes: (nx, ny) = (1, 1)

Figures 1 and 3 show how a standing wave in the
medium is distributed across the medium. In Figure
1, only half of the total wavelength of the wave is in
the medium. In Figure 3, the entire wave is within the
medium. Figure 1 shows that:

nxλx = 2L
(1)λx = 2L

1
2
λx = L

Figure 2: Standing Wave Modes: (nx, ny) = (1, 2)

Figure 3: Standing Wave Modes: (nx, ny) = (2, 1)

Figure 3 shows that:

nxλx = 2L
2λx = 2L
λx = L

(Note, this next demonstration required [Tipler &
Llewellyn, pp. 333-334] to complete.) To show that
G(f) = 8πf2/c3, we start by recognizing that G(f) =
dN
V df , where N is the number of states of the system
inside of a given shell of radius n, V is volume and f
is the frequency of the system. We continue by recog-
nizing that the modes of the system, represented in nx,
ny, and nz, can only be positive integers. The state
space, then, can be represented by 1

8 th of a sphere. the
part of the sphere in the positive octant. So we get:

N =
(

1
8

)(
4πn3

3

)
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Figure 4: Standing Wave Modes: (nx, ny) = (2, 2)

=
πn3

6

And now, we can easily calculate dN in terms of dn:

dN =
π3n2

6
dn =

πn2

2
dn

The infinitesimal frequency, df , can by found in terms of
the infinitesimal number of modes in any one direction,
dn, by:

2L = nλ

nλ =
nc

f

L =
nc

2f

n =
2fL
c

df =
c

2L
dn

G(f) is then:

G(f) =
dN

V df
=

πn2

2 dn

V c
2L dn

G(f) =
(
πn2

2

)(
2L
V c

)
=

πn2L

V c

Substituting in n = 2fL
c :

G(f) =
π
(

2fL
c

)2

L

V c

=
4πf2L3

V c3

But L3 = V , and we actually have twice as many states
since there are two polarities of light, so we end up with:

G(f) =
8πf2

c3

Part b

The probability of a mode having energy ε
is proportional to e−ε/kT , the Boltzman dis-
tribution. Let β = 1/kT , and integrate
the total probability Z =

´∞
0
e−βεdε to ob-

tain the normalization factor. Z(β) is also
called the partition function. Show that 〈ε〉 =
−d ln Z/dβ = kT . Show that this leads to
the Rayleigh-Jeans formula for the spectral in-
tensity of black body radiation.

The integral Z =
´∞
0
e−βεdε is relatively straight-

forward to find:

Z =
ˆ ∞

0

e−βεdε

=
[
− 1
β
e−βε

]∞
0

=
(
− 1
β

)
e−β(∞) −

(
− 1
β

)
e−β(0)

= 0 +
1
β

Z =
1
β

Z =
1
1
kT

Z = kT
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To find 〈ε〉, we use the definition 〈u〉 =
´
uf(x) dx´
f(x) dx

,

where, in this case, f(x) = e−βε, and we integrate
over the domain of ε, which is from 0 to∞, since there
are not negative energy states . We’ve already calcu-
lated

´∞
0
f(ε) dε = kT . This leaves

´∞
0
εe−βεdε. Note,

however, that εe−βε = − d
dβ e
−βε, so we can write:

ˆ ∞
0

εe−βεdε =
ˆ ∞

0

− d

dβ
e−βεdε

= − d

dβ

ˆ ∞
0

e−βεdε

= −dZ
dβ

=
1
β2

= kT 2

〈ε〉, then, becomes:

〈ε〉 =
(kT )2

kT
= kT

Also:

−
d ln( 1

β )

dβ
= − 1

1
β

− β−2

=
β

β2

=
1
β

= kT

It’s also possible to show this by noting that d lnZ =
1
Z dZ, so we have:

〈ε〉 = −
dZ
dβ

Z

= − 1
Z

dZ

dβ

= −d (lnZ)
dβ

Now that we have G(f) and 〈ε〉, we can calculate the
Rayleigh-Jeans equation, u(f) = G(f) 〈ε〉:

u(f) = G(f) 〈ε〉

=
8πf2

c3
kT

Part c

Assume the energy is not continuous, but
quantized to discrete levels ε = nhf for
n = 0, 1, 2, . . . Repeat the calculation of the
normalization factor Z =

∑∞
n=0 e

−βεn . Cal-
culate 〈ε〉. Show that this leads to Planck’s
formula.

The normalization factor, in this case, can be
found by recognizing that Z =

∑∞
n=0

(
e−βhf

)n =∑∞
n=0

(
e−hf/kT

)n
= 1

1−e−hf/kT . As in part (b), we
can note that:

εne
−βεn = − d

dβ
e−βεn

= −dZ
dβ

= − d

dβ

1
1− e−βhf

= −
(−1)

(
−e−βhf

)
(−hf)

(1− e−βhf )2

=
hfe−βhf

(1− e−βhf )2

So once again:

〈ε〉 =
−dZdβ
Z

=
hfe−βhf

(1−e−βhf )2

1
1−e−hf/kT

=

(
hfe−βhf

(1− e−βhf )2

)(
1− e−hf/kT

)
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=
hfe−βhf

1− e−βhf

=
hf

1
e−βhf

− 1

=
hf

eβhf − 1

=
hf

ehf/kT − 1

Now, to derive Planck’s formula, we put 〈ε〉 together
with G(f) to find u(f):

u(f) = G(f) 〈ε〉

=
8πf2

c3
hf

ehf/kT − 1

Part d

Show that 〈ε〉 = kT in the limit hf � kT .
Show that 〈ε〉 ≈ 0 in the limit hf � kT ,
thus solving the ultravilot catastrophe. Quali-
tatively, this is because the temperature is too
low to excite even one photon (n=1).

If hf � kT , we can use the Taylor expansion for ex:

1 + x+
x2

2!
+
x3

3!
+ · · ·

Ignoring the x2 and higher terms, we get:

ehf/kT = 1 +
hf

kT

And:

〈ε〉 =
hf

hf/kT + 1− 1

=
hf

hf/kT

= kT

For hf � kT , we have:

〈ε〉 =
hf

ehf − 1

Since, by l’Hopital’s rule, ehf − 1 → ∞ faster than
hf →∞,〈ε〉 ≈ 0.

Problem 2

Some of the fundamental constants in SI units
are:

h = 6.62607× 10−34J · s
c = 299792458m/s
e = 1.60218× 10−19C

ke = 8.98755× 109N ·m2/C2 =
1

4πε0
kB = 1.38065× 10−23J/K
me = 9.10938× 10−31kg
mp = 1.67262× 10−27kg
mn = 1.67493× 10−27kg

Note that 1eV = e · 1V is a compound
unit of energy. Calculate the following use-
ful combinations of constants in the units
specified: hc [eV · nm], ~c = h

2π c [MeV · fm],
kee

2 [eV · nm], α = kee
2/~c [1], kT [meV] at

room temperature T = 20◦C = 293.15K,
and me, mp, mn

[
MeV/c2

]
. We will use

these combinations in natural units repeatedly
throughout the rest of the semester.

NOTE: The mass of the proton and neutron in kg as
stated in the original problem is incorrect. These should
be ×10−27, not ×10−24.

hc [eV · nm]:

hc = (6.62607× 10−34J · s)(299792458m/s)
= 1.98644× 10−25J ·m
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We convert this by dividing througy by e and multiplying
by 109nm/m:

hc =
(

1.98644× 10−25J ·m
1.60218× 10−19C

)(
109nm/m

)
= 1239.84 eV · nm

~c = h
2π c [MeV · fm]:

~c =
(

1239.84 eV · nm
2π

)(
MeV
106eV

)(
106fm
nm

)
= 197.327MeV · fm

kee
2 [eV · nm]:

kee
2 =

(
8.98755× 109N ·m2

C2

)(
1.60218× 10−19C

)
= 1.43997 × 10−9eV ·m

We convert this by multiplying by 109nm/m:

kee
2 =

(
1.43997× 10−9eV ·m

) (
109nm/m

)
= 1.43997 eV · nm

α = kee
2/~c [1]:

α =
kee

2

~c

=
1.43997 eV · nm
197.327 eV · nm

= 7.29735× 10−3

=
1

137.05

kT [meV] at room temperature T = 20◦C = 293.15K:

kT =
1.38065× 10−23J/K
1.60218× 10−19C

(293.15K)

=
(
2.52617× 10−2eV

)(1000meV
eV

)
= 25.2617meV

=
1
40

eV

me, mp, mn

[
MeV/c2

]
:

For each, we findmc2, dividing the mass by the elemen-
tary charge and multiplying by c2 to find the energy.

mec
2 =

(
9.10938× 10−31kg
1.60218× 10−19C

)
(299792458m/s)2

me = 0.510998MeV/c2

mpc
2 =

(
1.67262× 10−27kg
1.60218× 10−19C

)
(299792458m/s)2

mp = 938.271MeV/c2

mnc
2 =

(
1.67493× 10−27kg
1.60218× 10−19C

)
(299792458m/s)2

mn = 939.565MeV/c2

Problem 3.24

The wavelengths of visible light range from
about 380 nm to about 750 nm.

Part a

What is the range of photon energies (in eV)
in visible light?

Each photon has energy E = hf = hc/λ. hc ≈
1240 eV · nm. So at 380 nm, each photon has energy:

E ≈ 1240 eV · nm
380 nm

≈ 3.26 eV

At 750 nm, each photon has energy:

E ≈ 1240 eV · nm
750 nm

≈ 1.65 eV
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Part b

A typical FM radio station’s broadcast fre-
quency is about 100 MHz. What is the energy
of an FM photon of the frequency?

NOTE: I assume they meant “of that frequency”.

Each photon has energy E = hf . So, at 100 MHz,
each photon has energy:

E =
(

6.62607× 10−34J · s
1.60218× 10−19C

)
(100MHz)

≈ 4.14× 10−7eV

Problem 3.26

The work function for cesium is 1.9 eV, the
lowest of any metal.

Part a

Find the threshold frequency and wavelength
for the photoelectric effect.

The work function is φ = hft = hc
λt
. Since h and hc are

just constants, ft and λt can be easily found:

ft =
φ

h

=
(1.9V)

(
1.60218× 10−19C

)
6.62607× 10−34J · s

≈ 4.59× 1014Hz

λt =
hc

φ

≈ 1240 eV · nm
1.9 eV

≈ 653 nm

Part b

Find the stopping potential if the wavelength
of the incident light is 300 nm.

The stopping potential is given by eV0 = hf − φ, or
V0 = hf−φ

e . However, we’re given the wavelength, not
the frequency, so we must use this form of the same
equation:

V0 =
hc
λ − φ
e

≈
1240 eV·nm

300nm − 1.9 eV
e

≈ 2.23V

(Note that the 1/e cancels with the e in eV to leave
volts.

Part c

Find the stopping potential if the wavelength
of the incident light is 400 nm.

Similar to part b:

V0 =
hc
λ − φ
e

≈
1240 eV·nm

400nm − 1.9 eV
e

≈ 1.20V

Problem 3.31

Under optimum conditions, the eye will per-
ceive a flash if about 60 photons arrive at the
cornea. How much energy is this in joules if
the wavelength of the light is 550 nm?
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The energy of each photon E = hc
λ :

E =
hc

λ

≈ 1240 eV · nm
550 nm

≈ 2.25 eV

If 60 photons with this energy arrive at the cornea, this
becomes (60 photons) (2.25 eV/photon) = 135 eV. To
convert this to Joules, just multiply by e:

E ≈ (135 eV)
(
1.60218× 10−19C

)
≈ 2.17× 10−17J

Problem 3.40

Compton’s equation (Equation 3-25) indicates
that a graph of λ2 versus (1− cos θ) should
be a straight line whose slope h/mc allows a
determination of h. Given that the wavelength
of λ1 in Figure 3-17 is 0.0711 nm, compute
λ2 for each scattering angle in the figure and
graph the result versus (1− cos θ). What is
the slope of the line?

Using the calibration of the Bragg spectrometer, θs =
6◦42′ = 6.7◦, and 2d sin θ = mλ, we can determine
2d
m = 0.0711nm

sin 6.7◦ = 0.6094 nm. From that, we can cal-
culate λ2 values using λ2(θB) =

(
2d
m

)
sin θB , taking θB

from the graphs in [Tipler & Llewellyn, p.137]. We can
also calculate 1 − cos θc using the angles specified for
each graph.

This yields the following for the function λ2(θB):

λ2(6◦42′) = 0.0711 nm
λ2(6◦47′) = 0.0720 nm
λ2(6◦56′) = 0.0736 nm
λ2(7◦06′) = 0.0753 nm

The corresponding values for f(θC) = 1− cos θC are:

f(0) = 0
f(45◦) = 0.293
f(90◦) = 1
f(135◦) = 1.707

Plotting λ2 versus f , we get Figure 5.

Figure 5: Compton Scattering for λ1 = 0.0711 nm

The y-intercept of the best fit line for that graph is
0.07117 nm, and the slope is 0.002432 nm = λc. The

χ2 = 1.59× 10−8nm, and δy =
√

χ2

2 ≈ 0.0009 nm.

Problem 3.47

When a beam of monochromatic x-rays is in-
cident on a particular NaCl crystal, Bragg re-
flection in the first order (i.e., with m = 1)
occurs at θ = 20◦. The value of d = 0.28 nm.
What is the minimum voltage at which the
x-ray tube can be operating?
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Bragg’s Law states that 2d sin θ = mλ, and we also
know that λm = 1240 eV·nm

Vm
. Since m = 1,we can

easily solve for Vm:

eVm =
1240 eV · nm

2d sin θ

=
1240 eV · nm

2(0.28 nm) sin 20◦

= 6474 eV

Dividing through by e to get volts yields 6474V.

Problem 3.49

Show that the maximum kinetic energy, Ek,
called the Compton edge, that a recoiling elec-
tron can carry away from a Compton scatter-
ing event is given by:

Ek =
hf

1 +mc2/2hf
=

2E2
γ

2Eγ +mc2

[Wikipedia helped with this one slightly.] We know that
the relationship between the wavelengths of the light
and the angle of scattering is given by the equation:

λ2 − λ1 =
h

mc
(1− cos θ)

We also know that wavelength is related to energy by
the equation:

Eγ = hf =
hc

λ

Substituting into the first equation, we get:

hc

E2
− hc

E1
=

h

mc
(1− cos θ)

1
E2
− 1
E1

=
1
mc2

(1− cos θ)

1
E2

=
(1− cos θ)

mc2
+

1
E1

E1

E2
=

E1 (1− cos θ)
mc2

+ 1

E2 =
E1

E1(1−cos θ)
mc2 + 1

E1 − E2 = Ek gives the energy transfered to the elec-
tron. To maximize Ek, we need to minimize E2. To
minimize E2, we want E1 (1− cos θ) as large as pos-
sible, which will happen when cos θ = −1, or when
θ = 180◦. This, along with the substitution for E2,
(and using Eγ = E1) gives:

Eγ − Ek =
Eγ

2Eγ
mc2 + 1

=
Eγ

2Eγ+mc2

mc2

=
Eγmc

2

2Eγ +mc2

Ek = Eγ −
Eγmc

2

2Eγ +mc2

=
Eγ
(
2Eγ +mc2

)
− Eγmc2

2Eγ +mc2

=
2E2

γ + Eγmc
2 − Eγmc2

2Eγ +mc2

Ek =
2E2

γ

2Eγ +mc2

Now that we have this, we can easily substitue Eγ = hf
back into the equation to get the other form from the
problem statement:

Ek =
2(hf)2

2hf +mc2

=
2(hf)2

2hf

1 + mc2

2hf

Ek =
hf

1 + mc2

2hf
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