
University of Kentucky, Physics 404G
Homework #1, Rev. B, due Friday, 2018-08-31

1. Save the Frog-Prince—A hypothetical prince, out wandering in forest, got turned into a frog
of mass 0.454 kg. The object of this exercise is to safely return him from the swamp to his rightful
place in the royal water fountain. We will perform our task with a cannon placed 10 m outside the
castle wall. Since the prince is moderately afraid of heights, we will fire him through an opening in
a window at an elevation of 5 m above swamp-level, with splash-down in the fountain, 4 m inside
the wall, aligned horizontally with the window and cannon, at an elevation 1 m above the swamp.
To avoid a ‘pane’-full splat, please keep all tolerances within 10 cm. Ignore the effects of wind
velocity and air resistance.

a) Let’s practice in Excel with a 1 lb cube of butter before putting anyone’s life in danger.
Integrate the equations of motion step-by-step using the leap-frog technique [no pun intended]: for
the differential equations ẋ = v and v̇ = g, where g = [0,−9.81] m/s2, starting from x0 = [0, 0] m
and v0 = [5, 14] m/s, calculate the new position and velocity (x,v) after each time step of ∆t=0.01 s,
till at least x = 15 m, a little past the target. Tabulate each time step on a grid with columns t, x,
y, vx, vy. Update each new row from values of the previous one, starting with initial conditions on
the first row. Use the functions match and index to find the height y1 at the wall (x = 10 m), and
y2 at the fountain (x = 14 m). Adjust the initial conditions so [y1, y2] = [5, 1] m within 10 cm.

b) Repeat in Matlab using expressions like v(end+1,:)=v(end,:)+. . . in a for or while loop to
step through the trajectory. Use the function max to calculate the maximum height of the frog, and
interp1 to calculate its position at the wall and fountain. Type help interp1 for details. Plot
the frog’s trajectory using plot(x,y), where x and y are column vectors of coordinates.

c) Use Matlab’s ode45 function to automatically integrate the trajectory. Create the file shoot.m
with a function yh = shoot(v0), where v0=[vx;vy] (input) and yh=[y1;y2] (output) are 2 × 1
column vectors. Tune the initial conditions v0 by hand to obtain a safe splashdown in the fountain
with target heights yt=[5;1].

d) Instead of solving the trajectory by guess work, we now implement the Newton-Rhapson
method [Numerical Recipes, §9.4] to iteratively refine the input coordinates v0 leading to the desired
output yt. For each iteration, numerically calculate the Jacobian matrix, M =

(
∂y1/∂vx ∂y1/∂vy
∂y2/∂vx ∂y2/∂vy

)
,

of partial derivatives of the function shoot(), such that dyh = M dv0, to characterize the effect
of adjusting the initial velocity by an arbitrary correction dv0. Use it to tune v0 by the associated
correction v0 = v0 + M \(yt-shoot(v0)), where the operator M\dy is shorthand for left division
via the inverse matrix inv(M)*dy. Iterate to solve for v0 such that yh(v0) = yt.

e) Perform the whole procedure automatically with Matlab’s root-finding functionality using the
command fsolve ( @(v)shoot(v)-yt, v0 ), which finds the vector v0 such that shoot(v0)==yt.
Can you solve the whole problem with one command?
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http://apps.nrbook.com/c/index.html

