University of Kentucky, Physics 404G Homework #2, Rev. C, due Wednesday, 2018-09-12

- 1. Projections: relational versus parametric geometry.
 - a) Show graphically that the following equations define a set of points $\{x\}$ on a line or plane,

	relational	parametric
line	$\{x \mid a \times x = d\}$	$\{x = x_1 + a\alpha \mid \alpha \in \mathbb{R}\}$
plane	$\{\boldsymbol{x} \mid \boldsymbol{A} \cdot \boldsymbol{x} = D\}$	$\{oldsymbol{x} = oldsymbol{x}_2 + oldsymbol{b}eta + oldsymbol{c}\gamma \mid eta, \gamma \in \mathbb{R}\}$

- where a, d, A, D are constants which define the geometry, $x_{1,2}$ are fixed points on the line and plane respectively, and α, β, γ are parameters that vary along the line/plane (they uniquely parametrize points in the line/plane). [bonus:] Show the 5th relation $\{x = x_2 + A \times \delta \mid \delta \in \mathbb{R}^3\}$.
- b) What constraint between a and d is implicit in the formula $a \times x = d$? Likewise, what relations between b, c, and A must be satisfied if both equations describe the same plane? For the line and the plane, substitute x from the parametric form into the relational form to show that they are consistent. What are d and D in terms of a, x_1 and A, x_2 , respectively?
- c) We define $\tilde{a} \equiv A/(a \cdot A)$. It is parallel to A but normalized in the sense that $a \cdot \tilde{a} = 1$. Using the BAC-CAB rule, show that $x = a(\tilde{a} \cdot x) \tilde{a} \times (a \times x)$ for any x. This is a non-orthogonal projection of x into a vector parallel to the line and a vector parallel to the plane. Illustrate this projection and show which term corresponds to each.
- d) [bonus:] Using c), calculate the point x_0 at the intersection of the line and plane in terms of a, d, A, D. Verify this by showing x_0 satisfies the relational equation for both the line and plane.
- e) Let $\tilde{\boldsymbol{a}} = \frac{\vec{b} \times \vec{c}}{\vec{a} \cdot \vec{b} \times \vec{c}}$, $\tilde{\boldsymbol{b}} = \frac{\vec{c} \times \vec{a}}{\vec{a} \cdot \vec{b} \times \vec{c}}$, and $\tilde{\boldsymbol{c}} = \frac{\vec{a} \times \vec{b}}{\vec{a} \cdot \vec{b} \times \vec{c}}$, where the arrows on $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ distinguish $\vec{a}, \vec{b}, \vec{c}$ from their covectors $\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}, \tilde{\boldsymbol{c}}$. This definition of $\tilde{\boldsymbol{a}}$ is consistent with above if $\boldsymbol{A} = \vec{\boldsymbol{b}} \times \vec{\boldsymbol{c}}$. Calculate the nine combinations of $(\vec{\boldsymbol{a}}, \vec{\boldsymbol{b}}, \vec{\boldsymbol{c}})^T \cdot (\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}, \tilde{\boldsymbol{c}}) = I$, i.e. $\vec{\boldsymbol{a}} \cdot \tilde{\boldsymbol{a}} = 1$, $\vec{\boldsymbol{a}} \cdot \tilde{\boldsymbol{b}} = 0$, ... to show they are mutually orthogonal. In this sense, $(\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}, \tilde{\boldsymbol{c}})$ is the dual or reciprocal basis of $(\vec{\boldsymbol{a}}, \vec{\boldsymbol{b}}, \vec{\boldsymbol{c}})$.
- f) The contravariant components of \boldsymbol{x} are defined as the components (α, β, γ) that satisfy the equation $\boldsymbol{x} = \vec{\boldsymbol{a}}\alpha + \vec{\boldsymbol{b}}\beta + \vec{\boldsymbol{c}}\gamma$; i.e., $(\vec{\boldsymbol{a}}, \vec{\boldsymbol{b}}, \vec{\boldsymbol{c}})$ is the contravariant basis. Using $\boldsymbol{x} \cdot \tilde{\boldsymbol{a}}$, etc., calculate the three contravariant components of \boldsymbol{x} in terms of dot products. Likewise, find the covariant components $(\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma})$ of \boldsymbol{x} , defined as the components $(\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma})$ which satisfy the equation $\boldsymbol{x} = \tilde{\boldsymbol{a}}\tilde{\alpha} + \tilde{\boldsymbol{b}}\tilde{\beta} + \tilde{\boldsymbol{c}}\tilde{\gamma}$; i.e. $(\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{b}}, \tilde{\boldsymbol{c}})$ is the covariant basis.
- **2.** Rotations. In addition to projection, the cross product *generates rotation*. For example, $\omega \times$ transforms to a rotating reference frame and $r \times$ appears in torque and angular momentum. Rotations are ubiquitous in all of physics, particularly mechanics. We will explore parallels between the cross product, the unit imaginary i, and matrix generator M in the context of rotations.
- a) The complex plane $\{w = (x,y)\}$ is the vector space of real and imaginary components of complex numbers $w = x + iy \in \mathbb{C}$, where $i^2 = -1$. Identify the two natural basis vectors (complex numbers) in this space. In addition to linear structure, show that complex multiplication has the form $w = w_1w_2 = (x_1x_2 y_1y_2) + i(x_1y_2 + y_1x_2) = x + iy$, matching matrix products of $\begin{pmatrix} x & -y \\ y & x \end{pmatrix}$.
- **b)** Show that the dot and cross product of two points $\mathbf{w}_1 = (x_1, y_1)$ and $\mathbf{w}_2 = (x_2, y_2)$ are given by the real and imaginary parts of the complex product $w_1^* w_2 = \mathbf{w}_1 \cdot \mathbf{w}_2 + i(\mathbf{w}_1 \times \mathbf{w}_2)_z$, where

- $w^* = x iy$ is the *complex conjugate* of w. Identify the symmetric and antisymmetric terms of this product. Thus the complex product $|w|^2 = w^*w$ equals the vector square $\mathbf{w} \cdot \mathbf{w}$.
- c) Show graphically that the operator $w \to iw$ rotates the point w 90° CCW about the origin, and that the operator $1 + i d\phi : w \mapsto w + iw d\phi$ preserves the magnitude of w (assuming $d\phi^2 = 0$), but rotates it CCW by the infinitesimal angle $d\phi$.
- d) Obtain a finite rotation from an infinite number of $d\phi$ rotations as follows: formally integrate the equation $dw = iw d\phi$ with the initial condition $w|_{\phi=0} = w_0$ to obtain the rotation formula $w(\phi) = R_{\phi}w_0$, where $R_{\phi} = e^{i\phi}$. Use this result to justify the identity $e^x = \lim_{n \to \infty} (1 + \frac{x}{n})^n$. Show this is a rotation by separating the Taylor expansion of $e^{i\phi}$ into x + iy to prove Euler's formula, $e^{i\phi} = \cos \phi + i \sin \phi$.
- e) Show that complex multiplication by i is equivalent to the vector operator $\hat{\boldsymbol{z}} \times$, and determine the matrix representation M_z of this operator; ie. $M_z \boldsymbol{r} = \hat{\boldsymbol{z}} \times \boldsymbol{r}$. Do the same for M_x and M_y to show that $\boldsymbol{v} \times = \boldsymbol{v} \cdot \boldsymbol{M} = v_x M_x + v_y M_y + v_z M_z$ is the matrix representation of $\boldsymbol{v} \times$ for any vector \boldsymbol{v} . Answer: $\boldsymbol{M} \sim (M_i)_{jk} = \varepsilon_{ijk}$, the Levi-Civita (cross product), tensor which is completely antisymmetric in indices i, j, k.
- f) Restricted to the xy-plane, show that $M_z^2 = -I$, a 2×2 matrix, analogous to $i^2 = -1$, and thus the matrix for a CCW rotation ϕ is $R_{\phi} = e^{M_z \phi} = I \cos \phi + M_z \sin \phi = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$. Note that the exponential of a matrix M_z is defined by its Taylor expansion. The Rodrigues formula for the matrix R_v of a CCW rotation by an angle v = |v| about the \hat{v} -axis is $R_v = e^{M \cdot v} = I \cos v + M \cdot \hat{v} \sin v + \hat{v} \hat{v}^T (1 \cos v)$. The third term projects out the axis of rotation \hat{v} .
- **3. Stretches.** In analogy with the *polar decomposition* $w = x + iy = \rho e^{i\phi}$ of complex numbers, any matrix A can be decomposed A = RS into a stretch S and a rotation R, which are the building blocks of all linear operators.
- a) Use the exponential form $R_{\boldsymbol{v}} = e^{\boldsymbol{M}\cdot\boldsymbol{v}}$ and the asymmetry of the generator $M^{\dagger} = -M$ to show that $R^{\dagger}R = I$ or $R^{\dagger} = R^{-1}$. In contrast, a stretch is symmetric or Hermitian $S^{\dagger} = S$.
- **b)** A symmetric matrix S is guaranteed to have a complete set of eigenvectors $V = (\mathbf{v}_1, \mathbf{v}_2, \ldots)$ and corresponding eigenvalues $\lambda_1, \lambda_2, \ldots$, such that $S\mathbf{v}_i = \mathbf{v}_i\lambda_i$. Show that we can extend this equation to SV = VW, where $W = \text{diag}(\lambda_1, \lambda_2, \ldots)$ is diagonal.
- c) Show that two eigenvectors v_i, v_j of S with distinct eigenvalues $\lambda_i \neq \lambda_j$ must be orthogonal: $v_i \cdot v_j = 0$, and therefore the matrix of eigenvectors is an orthogonal transformation: $V^{\dagger}V = I$. [bonus]: Interpret the resulting decompositions $S = VWV^{\dagger}$ and $W = V^{\dagger}SV$ in terms of rotations.
- d) Calculate the eigenvalues and eigenvectors of $M_z=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ Do they look familiar? Show that $M_z=VWV^\dagger=\frac{1}{2}\begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}\begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}\begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}$ and $e^{M_z\phi}=Ve^{W\phi}V^\dagger=\frac{1}{2}\begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}\begin{pmatrix} e^{-i\phi} & 0 \\ 0 & e^{i\phi} \end{pmatrix}\begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}$. Multiply this out to verify part 2f). Thus real Hermitian matrices have real eigenvalues while antiHermitian matrices have Tr=0 and imaginary eigenvalues. The exponential of a Hermitian matrix is positive definite with real positive eigenvalues, while the exponential of an antiHermitian matrix is unitary with Det=1 and unit modulus eigenvalues. This is the normal matrix analogy which completes the connection between matrices and complex numbers.
- e) Singular Value Decomposition (SVD) [bonus] Combine polar (A = RS) and eigen $(S = VWV^{\dagger})$ decompositions, using U = RV, to show that any $m \times n$ matrix ${}_{m}A_{n}$ may be decomposed into $A = UWV^{\dagger}$, where $U \equiv V^{\dagger}R$, $U^{\dagger}U = I_{m}$, $V^{\dagger}V = I_{n}$, and ${}_{m}W_{n}$ is diagonal and positive definite.