University of Kentucky, Physics 404G Homework #3, Rev. C, due Thursday, 2018-09-20

1. The **Cartesian**, **cylindrical**, and **spherical** coordinate systems are by far the most common. For each of the three coordinate systems:

a) Determine the coordinate transformation functions $q^i(\mathbf{r})$ in terms of each of the other two systems. *Hint: combine the simpler Cartesian-cylindrical and cylindrical-spherical transformations to obtain Cartesian-spherical.*

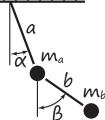
b) Pick a point \mathbf{r}_0 and illustrate the three coordinate isosurfaces $q^i(\mathbf{r}) = q_0^i$ (constant) that pass through \mathbf{r}_0 , labeling all lengths and angles in your diagram. For each coordinate q^i , identify the curve $\mathbf{s}(q^i; q_0^j, q_0^k)$ at the intersection of two surfaces of constant $q^j = q_0^j$ and $q^k = q_0^k$.

c) Calculate $\mathbf{b}_i = \partial s/\partial q^i$ using $d\mathbf{s} = \hat{\mathbf{x}}dx + \hat{\mathbf{y}}dy + \hat{\mathbf{z}}dz$. Normalize $\mathbf{b}_i = \hat{\mathbf{e}}_i h_i$ to find the unit vectors and line element $d\mathbf{s} = \hat{\mathbf{e}}_i h_i dq^i$, [bonus:] area element $d\mathbf{a} = \frac{1}{2}d\mathbf{s} \times d\mathbf{s} = \hat{\mathbf{e}}_k h_i h_j dq^i dq^j$ for i, j, k cyclic, and [bonus:] volume element $d\tau = \frac{1}{3}d\mathbf{s} \cdot d\mathbf{a} = h_1 h_2 h_3 dq^1 dq^2 dq^3$ (for orthogonal coordinates). Note that the scale factors h_{θ} and h_{ϕ} for angular coordinates are just radius of curvature, according to the arc length formulae $ds_{\theta} = rd\theta$ and $ds_{\phi} = \rho d\phi$.

d) Invert cylindrical coordinates to obtain $(\rho, \phi, z) = f^{-1}(x, y, z)$. Calculate the covariant basis $\mathbf{b}^i = \nabla q^i = \hat{\mathbf{e}}_i / h_i$ to verify $\mathbf{b}_i \cdot \mathbf{b}^j = \delta_i^j$. [bonus:] Same for spherical coordinates.

e) Calculate $g_{ij} = \mathbf{b}_i \cdot \mathbf{b}_j = \text{diag}(h_1^2, h_2^2, h_3^2)$ and [bonus:] $\Gamma_{ij} = \partial \mathbf{b}_i / \partial q^j$.

2. The position of the lower mass m_b of a **double pendulum** is most naturally parametrized by the non-orthogonal coordinate system (α, β) , illustrated below. The position of the upper mass m_a is trivially parametrized by α , but that of the lower mass m_b depends on both angles (α, β) .



a) Calculate and draw the α and β coordinate lines, the contravariant and covariant basis vectors \boldsymbol{b}_i and \boldsymbol{b}^i . Use the components of \boldsymbol{ds} to obtain the velocity $\boldsymbol{v} = \dot{\boldsymbol{r}} = \boldsymbol{b}_i \dot{q}^i$ of the lower mass.

b) Calculate the metric $g_{ij} = \mathbf{b}_i \cdot \mathbf{b}_j$ and thus $ds^2 = g_{ij}dq^i dq^j$ to obtain the kinetic energy $T_b = \frac{1}{2}m_b g_{ij}\dot{q}^i \dot{q}^j$ of the lower mass. Raise the indices of \mathbf{b}_i with the inverse metric g^{ij} to obtain the covariant basis \mathbf{b}^i . [bonus:] Compare with a direct calculation of the gradient $\mathbf{b}^i = \nabla q^i$.

c) Calculate the connection vectors $\Gamma_{ij} = \partial b_i / \partial q^j$. Compare the covariant components $\Gamma_{ijk} = \Gamma_{ij} \cdot b_k$ of $\Gamma_{\alpha\alpha}$ with those obtained directly from the metric $\Gamma_{ijk} = \frac{1}{2}(g_{ik,j} + g_{jk,i} - g_{ij,k})$. Use Γ_{ijk} to obtain the covariant components of acceleration $\mathbf{A} = \dot{\mathbf{v}} = \mathbf{b}_k \ddot{q}^k + \Gamma_{ij} \dot{q}^i \dot{q}^j$ of the mass m_b .

d) Calculate the potential of gravity $V(\alpha, \beta) = mgh$ for both masses m_a and m_b in terms of (α, β) to construct the Lagrangian $\mathcal{L} = T - V$. Compare the two equations of motion for α and β , in the covariant components of $\mathbf{F} = m\mathbf{A}$ using $F_i = \frac{\partial V}{\partial q^i}$ and A_i from above, with the direct calculation using Lagrange's equations.

e) Computer exercise: numerically integrate the four first order equations of motion in the variables $\mathbf{q} = (\alpha, \beta, \dot{\alpha}, \dot{\beta})$ for a = 2 m and b = 1 m, $m_a = m_b = 1$ kg, starting from initial conditions $\mathbf{q}_0 = (.1, .2, 0, 0)$, in units of [rad] and [rad/s]. Vary the initial value β_0 to discover two modes of pure periodic motion, and calculate their [eigen]frequencies. Increase α_0 and β_0 until the motion becomes *chaotic* (unpredictable).